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ABSTRACT

A new robust identification method is developed for use in an adaptive control system. The
new type of estimator is called the robust estimator, since it is robust to the effects of both
unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator
was motivated by a need to provide guarantees in the identification part of an adaptive controller.
To enable the design of a robust control system, a nominal model as well as a frequency-domain
bounding function on the modeling uncertainty associated with this nominal model must be
provided. The results of this thesis provide this information.

Two estimation methods are presented for finding parameter estimates and, hence, a nominal
model. One of these methods is based on the well developed field of time-domain parameter
estimation. In a second method of finding parameter estimates, a type of weighted least-squares
fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown
to perform better, in general, than the time-domain parameter estimator. In addition, a new
methodology for finding a frequency-domain bounding function on the modeling uncertainty is
presented. A frequency-domain bounding function on the disturbance is used to compute a
frequency-domain bounding function on the additive modeling error due to the effects of the
disturbance and the use of finite-length data.

The performance of the robust estimator in both open-loop and closed-loop situations is
examined through the use of simulations. The excitation conditions for the robust estimator, and
the issues concerning the introduction of a probing signal in a closed-loop context, are also
analyzed in the thesis.
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Thesis Co-Supervisor: Dr. Lena Valavani
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GLOSSARY

Denominator polynomial of the discrete-time nominal model structure
Numerator polynomial of the discrete-time nominal model structure
Compensator gain, see Eqn. (7.3.4) or (9.6.1)

Target closed-loop compensator gain, see Eqn. (7.4.10)
Disturbance signal
Maximum magnitude of d[n]

DFT of N points of d[m] ending with n
Magnitude bound on DN“((ok) for n > N-1

Prediction error, see Eqn. (4.5.3)
Equation error signal due to both the unmodeled dynamics and the disturbance

Equation error signal due to the unmodeled dynamics alone

Equation error signal due to the disturbance alone

Tracking error

Cumulative frequency-domain bounding function, see Eqn. (5.3.3)
Magnitude bound on Ecumf,Nn(“‘k)’ see Eqn. (5.3.1)

Estimation error due to the use of finite-length data, see Eqn. (5.2.2)
Magnitude bound on EN™(®, ), see Eqn. (5.2.4)

Frequency-domain estimation error, see Eqn. (5.2.12)

Frequency-domain bounding function on IEf’Nn((ok)l, see Eqn. (5.2.14)

Worst-case frequency-domain bounding function, see Eqn. (8.3.7)

Remainder term, see Eqn. (5.2.5)

Filter for time-domain parameter estimator

Impulse response of the nominal discrete-time plant

Impulse response of the true continuous-time plant
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Impulse response of the true discrete-time plant
True continuous-time plant

Nominal continuous-time plant

Nominal discrete-time plant

Cumulative frequency-domain estimate, see Eqn. (5.3.2)

True discrete-time plant ‘
Impulse response from the disturbance signal to the equation error e4[n]
Magnitude bound on h[n,0], see Eqn. (4.3.7)

Impulse response from the input signal to the equation error € [n]

Magnitude bound on h;[n,0], see Eqn. (4.4.17)
Impulse response of the additive plant error G(z,6) 5(z), see Eqn. (4.4.7)
Magnitude bound on hga[n,e]

Transfer function from the disturbance signal to the equation error €,[n]

Transfer function from the input signal to the equation error €, [n]

Discrete-time compensator
Memory length

Discrete time index

General symbol for the DFT length

DFT length used in the frequency-domain parameter estimator

DFT length used in the time-domain parameter estimator

Projection matrix in the time-domain parameter estimator, see Eqn. (4.5.8)
Target discrete-time pole of the nominal closed-loop system

Closed-loop reference signal
Continuous time

- Sampling period

Plant input control signal
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Filtered version of u[n], see Eqn. (4.2.11)

Maximum magnitude of u[n]

DFT of N points of u[m] ending with n
Probing signal
DFT of the probing signal v[n]

Plant output signal
Filtered version of y[n], see Eqn. (4.2.12)

DFT of N points of y[m] ending with n

Continuous-time unstructured uncertainty (unmodeled dynamics)

Magnitude bound on continuous-time unstructured uncertainty
Continuous-time smoothness condition, a magnitude bound on dﬁcu(jm) /dw
Discrete-time unstructured uncertainty (unmodeled dynamics)

Impulse response of the uﬂstructured uncertainty 8u(z)

Magnitude bound on the discrete-time unstructured uncertainty

Discrete-time smoothness condition, a magnitude bound on d8u(ej‘°T) /dw

Discrete-time structured uncertainty, see Eqn. (5.6.3)

Total discrete-time uncertainty including the effects of both structured and
unstructured uncertainty
el (oT, 8)

Uncertainty bounding function, a magnitude bound on g, (

Asun(ej“)kT, 6) Uncertainty bounding function at time index n, see Eqn. (5.5.6)

Asun(ejka, é) Robust uncertainty bounding function at time index n, see Eqn. (5.6.12)

Ksun(ej ka, ) Smoothed uncertainty bounding function at time index n, see Eqn. (5.7.37)
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Xsun(ej“)kT, ) Uncertainty bounding function including safety factor, see Eqn. (5.8.3)
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(ejmT) Worst-case bounding function on |d85u(ej‘°T, 8) / dol, see Eqgn. (5.7.11)

Bounding function on Idd ej(”T, 6) / dwl at time index n, see Eqn. (5.7.18)

sul
Signal regression vector, see Eqn. (4.2.7)

Filtered signal regression vector, see Eqn. (4.2.16)

Denotes the condition number of a matrix

True continuous-time parameter vector

Bounded set that contains the continuous-time parameter vector OCO

True discrete-time parameter vector

Bounded set that contains the discrete-time parameter vector 6,
Estimate of the discrete-time parameter vector

Error of the discrete-time parameter vector estimate, g[n] = é[n] - 60
Projected estimate of the discrete-time parameter vector

Error of the projected parameter vector estimate, ’é*[n] = 9*[n] - 60

Denotes the maximum singular value of a matrix

Denotes the minimum singular value of a matrix

Dead-zone signal in time-domain parameter estimator, see Eqn. (4.5.9)

Discrete frequency spacing, @;,.=®¢/N
General notation for a discrete frequency point, @, = (k/N) &g
Sampling frequency

Target closed-loop bandwidth




Chapter 1 Page 20

CHAPTER 1.
INTRODUCTION

1.1 Overview
1.1.1 Motivation

The use of feedback control in systems having large amounts of uncertainty requires the use
of algorithms that learn or adapt in an on-line situation. A control system that is designed using
only a priori knowledge results in a relatively low bandwidth closed-loop system so as to guarantee
stable operation in the face of large uncertainty. An adaptive control algorithm, which can identify
the plant on-line, thereby decreasing the amount of plant uncertainty, can yield a closed-loop
system that has a reduced sensitivity function, higher bandwidth and thus better performance than a
non-adaptive algorithm. There are many problems with the adaptive control algorithms that have
been developed, to date. In particular, most adaptive control algorithms available are not robust to
unmodeled dynamics and unmeasurable disturbances, particularly in the absence of a
persistently-exciting input signal. _

In this thesis, we develop and test a set of plant identification algorithms which can be used
with confidence in an adaptive control setting. We attempt to improve performance, while
providing ironclad guarantees that the closed-loop system remains stable in the presence of
high-frequency modeling errors and disturbances. As we shall see, such stability guararitees have a
price; extensive real-time calculations in the frequency-domain are required.

In this subsection, we will motivate the robust estimation problem by first discussing the
adaptive control problem, in general, and then presenting a perspective on the robust adaptive
control problem. Further, we justify the choice of an infrequent adaptation strategy before
discussing the main focus of the thesis, the development of a robust estimator.

The Adaptive Control Problem

The adaptive control problem has reccived‘considcrable attention during the past thirty years.
However, while many different algorithms and analysis methods have been developed, a pragmatic
adaptive control design methodology has not, as yet, been developed. The primary difficulty with
current adaptive control algorithms is that they make restrictive (non-practical) assumptions about
the plant. In addition, these algorithms often assume that the system operates in an ideal
environment. Recent research efforts have focused both on reducing the restrictiveness of the plant
assumptions, as well as the issue of robustness to unmodeled dynamics and unmeasurable
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disturbances. However, an algorithm that requires reasonable a priori information about the plant,
and that can provide guarantees of global stability in the absence of persistent excitation and in the
face of reasonable classes of unmodeled dynamics and unmeasurable disturbances, is still an
unreached goal. Although many researchers have suggested "safety nets" for specific applications,
a general "safety net" methodology is not available. This thesis represents a contribution in that
direction. '

Stability of Adaptive Control Algorithms

The use of current adaptive control algorithms yields systems that are nonlinear and possibly
time-varying. Thus, the closed-loop stability of these systems depends on the inputs and
disturbances, as well as the plant (including any unmodeled dynamics) and the compensator.
However, the stability properties of a linear time-invariant (LTI) feedback system depend only on
the plant and compensator, not the inputs and disturbances. Because of this fact, we take the point
of view that it is desirable to make the system "as LTI as possible”. Of course, our motivation for
using adaptive control is to achieve a performance improvement (increased bandwidth) over the
best non-adaptive LTI compensator. So, there is the ever present tradeoff between performance -
and robustness.

The preceding argument can be used to justify an infrequent control-law update strategy. It
is envisioned that a discrete-time estimator (identifier) will be used to continually update the
estimates of the plant as long as there is useful information in the input/output data of the plant.
The continuous-time plant is in a closed-loop that is controlled by a fixed-structure, discrete-time
compensator whose parameters are updated infrequently. It can be shown that, if the compensator
parameters are updated sufficiently infrequently, then the LTI stability of the frozen-time system at
every point in time guarantees the exponential stability of the time-varying system. In this way, the
control system looks nearly LTI and consequently is more robust to disturbances, than a highly
nonlinear adaptive controller. It is emphasized here that a robust adaptive controller that slowly
learns and produces successively better LTI compensators is the end product envisioned in this
thesis. The work presented in this thesis aims to develop only the estimation part of this robust
adaptive controller. On the other end of the adaptive control spectrum are algorithms that quickly
adapt to a changing system. However, these systems have poor robustness properties in that they
are highly sensitive to unmodeled dynamics and unmeasurable disturbances, particularly in the
absence of persistent excitation.
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A Perspective on the Robust Adaptive Control Problem

With the solution of the adaptive control problem for the ideal case, that is, when there are no
unmodeled dynamics nor unmeasurable disturbances, the problem of robustness has become a
focus of current research. Recently, a new perspective on the robust adaptive control problem has
appeared in the literature [1]. Briefly, a "robust" adaptive controller is viewed as a combination of
a "robust" parameter estimator and a "robust" control law. Indeed, researchers have coined the
term "adaptive robust control" to emphasize this new perspective. This is an appealing point of
view. For example, if the robust parameter estimator is not getting any useful information and,
consequently, is not able to improve on the current knowledge of the plant parameters, then the
adaptation aspect of the algorithm can be disabled and the adaptive controller reduces to a robust
control law. That is, in a situation where the adaptive algorithm is not learning, the adaptive
controller becomes simply the best robust LTI control law that one could design based only on a
priori information and any additional information learned since the algorithm began. As an aside
‘we mention the fact that currently the control field doesn't provide a method for designing the
best-performing, robustly-stable, LTI control law in the face of uncertainty. A second benefit of
the new adaptive control perspective is that it, like all indirect adaptive control approaches, enables
us to view the adaptive control problem as having two parts, the parameter estimator and the control
law. Alternatively, the direct adaptive control approaches combine the estimation and control-law
design aspects of the problem. That is, in the direct approach the control law parameters are
estimated directly instead of first estimating the plant and then computing the new control law
parameters as is done in the indirect approach. Since we use the indirect approach in this thesis, we
will able to use previous results in the fields of parameter estimation and robust control. The field
of LTI control is well established for questions of stability robustness and offers several possible
robust control algorithms for use in an adaptive controller. However, the problem of robust
estimation (identification) has received less attention by researchers. This area of robust
identification is where the thesis makes its main contribution.

Brief Statement of the Robust Estimation Problem

The main focus of this thesis is the development of a robust estimator for use in an adaptive
control system. In non-adaptive robust control, the designer must perform two identification steps;
he must obtain both a nominal model and some measure of its goodness. A useful measure of
goodness is a frequency-domain bounding function on the modeling errors as this permits the use
of frequency-domain stability robustness tests. Now, since non-adaptive robust control requires
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both of the above steps, the same steps must implicitly, or explicitly, be present in a robust adaptive
control scheme, the difference being that the steps are carried out on-line rather than off-line. Thus,
we assume that our robust estimator must supply:

1) a nominal plant model,

2) a bounding function on the magnitude of the modeling error vs. frequency of this nominal

model with respect to the true plant. '
So, given an a priori assumed model structure, the robust estimator must provide an estimate of the
parameters of the plant, as well as a frequency-domain error bounding function corresponding to
this estimate. That is, we define a robust estimator as one that generates a model of the plant along
with guarantees about how good the model is. Given this information, several robust control-law
design methodologies could be used. This adaptive control scenario is shown in Figure 1.1.

In this thesis, we present two methodologies for estimating the parameters of the nominal
model, one based on time-domain methods and one based on frequency-domain methods. In
addition, we will present one method for computing a frequency-domain bounding function on the
modeling uncertainty. It will be shown in the simulations that the specific time-domain parameter
estimator that is described in this thesis has some weaknesses. Thus, frequency-domain methods
will be used to provide both parameter estimates and the aforementioned frequency-domain
bounding function on the modeling uncertainty. The frequency-domain calculations of these
methods require significant real-time computations.
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Figure 1.1: Robust Adaptive Control System.
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The goal of the robust estimator is to enable improved closed-loop performance through the
reduction of the modeling uncertainty. The modeling error or uncertainty has two components: 1)
an unstructured component due to the modeling mismatch error between the finite-dimensional
plant model and the plant, and 2) a structured component due to errors in the parameters of the
nominal model. The function of the robust estimator is to eliminate the structured uncertainty of the
plant model. That is, the robust estimator seeks to yield a better performing closed-loop system by
reducing the structured uncertainty. The robust estimator will be of most use in situations where
there is significant structured uncertainty. We do not require the robust estimator to eliminate the
inherent unstructured uncertainty due to high-frequency unmodeled dynamics. The role of the
robust estimator is illustrated in Figure 1.2.

Prior Plant Model
Finite-dimensional with Large
Model Mismatch Error Structured Uncertainty
(Unstructured
Uncertainty)
4
Plant Model Plant Model
with Robust with
Unstructured Uncertainty » Estimator . Unstructured Uncertainty
and Large and Small
Structured Uncertainty Structured Uncertainty
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Parameters Parameters
Conservative : Improved
Performance Performance

Figure 1.2: The Role of the Robust Estimator.
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1,1.2 Contributions of the Thesis

The results of this thesis represent a major step toward a more complete understanding of the
robust adaptive control problem. The primary technical contributions are in the area of robust
estimation (identification), however, the thesis provides insight as to the future of robust adaptive
control. We now discuss the novel features of the robust estimator and then summarize some of
the contributions of the thesis.

The robust estimator is the first of its kind in that it provides frequency-domain guarantees
concerning the accuracy of the nominal plant model. The author is not aware of any other
algorithm that provides these frequency-domain guarantees. As was mentioned earlier, we use a
frequency-domain bound on the modeling errors since this allows us to use existing stability
robustness results. We emphasize that the identification part of an adaptive controller must provide
some kind of guarantee concerning the nominal model, or else the resulting control-law cannot
guarantee the stability of the closed-loop system. We will use a deterministic framework
throughout the thesis since guarantees of stability are sought.

The key technical contribution of the thesis is the development of new signal processing
theorems that enable the explicit bounding of frequency-domain estimation errors due to the use of
finite-length data. These theorems are essential for the on-line computation of guaranteed bounds
on the modeling uncertainty. The robust estimator uses discrete Fourier transforms (DFTs) to
compute a frequency-domain estimate of the plant and then uses these signal processing theorems
to compute the required frequency-domain bounding function.

In contrast to some current adaptive control algorithms, the robust estimator uses pragmatic
assumptions concerning the a priori known information about the plant. Specifically, in practice,
engineers are generally able to determine the following:

a) the structure of the (low-frequency) nominal model,
b) an approximate idea of the parameters of the nominal model,
¢) a frequency-domain bounding function on the size of the unmodeled dynamics, (i.e. a
magnitude bounding function on the Fourier transform),
d) an approximate idea of how smooth the unmodeled dynamics are in the frequency-domain,
e) a frequency-domain bounding function on the magnitude of the Fourier transform of the
unmeasurable disturbance (i.e. where the disturbance has its energy), and
f) a coarse bounding function on the impulse response of the plant, and coarse time-domain
magnitude bounds on both the unmeasurable disturbance and the input signal.
The development of the robust estimator assumes that the plant is stable, so the impulse response of
f) above is bounded. The robust estimator uses the above information and blends it with the
information gleaned on-line from the input/output data. It is the first such estimator to use a priori
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frequency-domain information about the unmodeled dynamics. The above continuous-time
assumptions are translated to an analogous set of discrete-time assumptions. The robust estimation
problem is then stated and solved in discrete-time. All on-line frequency-domain calculations are
computed using DFTs.

The development of the robust estimator entailed the study of techniques for robust
time-domain parameter estimation. Some time-domain bounding results are developed in the thesis
so that we can robustify a time-domain parameter estimator. This is done through the use of a
time-varying dead-zone. It will later be shown that this type of robust time-domain parameter
estimator performs unsatisfactorily. This poor performance motivates our development of a
frequency-domain parameter estimator which is found to perform much better than the time-varying
dead-zone approach.

Further contributions of this thesis are the insights gained concerning the closed-loop
operation of an adaptive system that uses the robust estimator. A simple adaptive control system
that uses the robust estimator is developed for a limited class of plants. The simulation of this
simple adaptive control system allows us to assess the potential of the robust estimator. In
addition, in this thesis we consider the introduction of probing signals into the closed-loop system.
The robust adaptive control system that is shown in Figure 1.1, is essentially a passive system in
that it only learns and, hence, updates the compensator parameters when there is useful information
available to it, in the form of a rich control input signal. If it is essential that the robust adaptive
controller improve on its a priori information and the control input signal is not rich, in the sense
that the robust estimator cannot improve its estimate, then an external probing signal must be
introduced at the plant input to enhance identification. That is, in some closed-loop situations it will
be necessary to add a probing signal so that identification can occur. We analyze the excitation
conditions that are required by a robust adaptive control system that uses the robust estimator. This
enables us to devise a probing signal strategy that can be used to attain a target closed-loop
bandwidth.

The simulation results of this thesis suggest that the robust estimator (using the
frequency-domain parameter estimator) can provide performance improving information to the
control-law under reasonable excitation conditions. The cost of this improved closed-loop
performance with stability-robustness guarantees is the extensive real-time calculations of the
robust estimator.

1.1.3 Organization of the Thesis

The thesis is organized into ten chapters and several appendices. Figure 1.3 illustrates the
logical interdependence of the various chapters with the exception of the introductory and
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concluding chapters. In Chapter 2 we present the notation that will be used throughout the thesis.
In addition, this chapter contains derivations of several new signal processing theorems that will be
used in the later parts of the thesis. The statement of the robust estimation problem is presented in
Chapter 3 where the assumptions of the robust estimator are first stated in continuous-time and then
used to form an analogous set of discrete-time assumptions. Chapter 4 presents a robust
time-domain parameter estimator while Chapter 5 presents a frequency-domain based method of
finding parameter estimates as well as a frequency-domain method for bounding modeling
uncertainty. Chapter 6 addresses the many design issues of the robust estimator in the context of
closed-loop adaptive control. In addition, Chapter 6 investigates how the assumption of a
frequency-domain bounding function can or cannot be satisfied by various disturbance models.
Computational issues are also discussed in Chapter 6. Chapter 7 ties together the results of the
previous chapters by presenting a robust adaptive control system, which uses the robust estimator,
and that can be applied to a restricted class of plants. Chapters 8 and 9 provide a two part
presentation of several illustrative simulation examples. In particular, we provide a closed-loop
simulation example that demonstrates the potential of adaptive controllers that use the robust
estimator. Finally, Chapter 10 presents conclusions and directions for future research. The
appendices contain useful results that are referenced, as needed, in the main body of the thesis
itself.
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Figure 1.3: Logical Interdependence of Thesis Chapters.
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1.2 Previous Work and Related Literature
1.2.1 Robust Adaptive Control

During the late 1970s, global stability results for Model Reference Adaptive Controllers
(MRACQ), in the absence of unmodeled dynamics and unmeasurable disturbances, were derived by
Narendra and Valavani [3], Narendra, Lin and Valavani [4], and Feuer and Morse [5]. These
results made several restrictive assumptions concerning the plant. It was assumed that the SISO
plant was: 1) minimum phase, 2) of known relative degree, 3) of known sign on high-frequency
gain, 4) of known maximum order, and 5) of known upper bound on the high-frequency gain.
These assumptions were necessary in order to prove global asymptotic stability of the
continuous-time adaptive control algorithms. A different adaptive control approach, the
Self-Tuning Regulator (STR) was developed by Astrom et al. [6,7] for discrete-time systems.
Stability results were not developed for the STR algorithms as they were derived in a stochastic
framework; rather, convergence properties were later shown to be true. A third approach was
pursued by Goodwin, Ramadge and Caines [8] who presented an algorithm and stability proof of a
projection-type adaptive controller for discrete-time systems. As in the MRAC case, unmodeled
dynamics and unmeasurable disturbances were not considered. In addition, the STR and
projection-type algorithms both make restrictive assumptions about the plant as in the MRAC case.

In the early '80s it became apparent with the work of Rohrs et al. [9,10] that there were
robustness problems with all of the previously developed adaptive control algorithms. These
problems stemmed from the nonlinear nature of the adaptive control problem and were different
than the stabilty-robustness problems encountered in the design of LTI compensators. Rohrs et al.
[9,10] showed that the presence of unmodeled dynamics and unmeasurable disturbances would
cause the current adaptive algorithms to become unstable when a persistently-exciting input signal
was absent. This realization initiated investigations into the development of robust adaptive control
algorithms.

In recent years, several different approaches to the robust adaptive control problem have been
pursued. In 1982, Ioannou and Kokotovic [11] introduced the use of an exponential forgetting
factor to achieve a measure of robustness in adaptive control systems. At about the same time,
Peterson and Narendra [12] incorporated a fixed dead-zone mechanism into a continuous-time
MRAC and proved that the system was globally stable in the presence of a bounded, unmeasurable
disturbance. When the output error of Peterson and Narendra's algorithm was less than the error
that might be due to the bounded disturbance, the adaptation mechanism was disabled. They did
not consider the effects of unmodeled dynamics. This fixed dead-zone mechanism for intermittent
adaptation has also been used in discrete-time systems [13]. While a fixed dead-zone is useful for
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obtdining robustness with respect to a bounded disturbance, it cannot be used to provide robustness
to unmodeled dynamics. This is because the output error due to the unmodeled dynamics cannot be
absolutely bounded but, rather, depends on the size of the states of the plant. Thus, a time-varying
deadzone which depends on the plant states (or alternatively the plant inputs and outputs) must be
included in the system to provide robustness to both unmodeled dynamics and unmeasurable
disturbances.

In 1984, Orlicki et al. [14,15] incorporated a time-varying dead-zone into a continuous-time
MRAC and proved that the system was simultaneously robust to both unmodeled dynamics and
certain classes of disturbances, including bounded disturbances. Orlicki's algorithm implicitly
assumed that the plant was open-loop stable. He used on-line spectral calculations of the plant
input and output to determine when useful information was available for the adaptation algorithm.
Recently, Kreisselmeier and Anderson [16] introduced what they call a "relative dead-zone" to
provide robustness to unmodeled dynamics in discrete-time MRACs. The system is permitted to
adapt unless the error due to the unmodeled dynamics is larger than the current output error. They
bound the output error due to unmodeled dynamics using a stable difference equation driven by a
weighted sum of the current plant input and ohtput. Goodwin et al. [17,18] have extended this
work to include the treatment of both unmodeled dynamics and bounded disturbances, by adding a
fixed component to the dead-zone of Kreisselmeier and Anderson to account for a bounded
disturbance. In addition, this new type of time-varying dead-zone is used by Goodwin et al.
[17,18] in a modified least-squares algorithm. This new modified least-squares algorithm will be
used in this thesis. However, we will use on-line spectral calculations to bound the output error
due to unmodeled dynamics, rather than Kreisselmeier and Anderson's bounding mechanism.

A different approach to the robust adaptive control problem advocates the use of the basic
ideal-case adaptive control algorithms in combination with a supervisory level, which is added to
the algorithm. Such a supervisory level provides a type of "safety net" that can detect the
conditions under which an adaptive control algorithm has problems, such as lack of excitation.
When these conditions are detected the adaptive algorithm is temporarily disabled so as to avoid
degradation of the parameter estimates and, hence, possibly unstable behavior. Both Astrom [19],
and Isermann and Lachmann [20] have suggested this kind of approach. These supervisory type
algorithms are ad-hoc and have not been shown to provide "safety nets" that guarantee stability. In
a sense, the results of this thesis represent a kind of "safety net" in that the robust estimator based
adaptive controller of this thesis seeks to achieve the same type of goals. That is, the robust
estimator doesn't update the plant parameters and, hence, the control-law doesn't change when
there is not any useful information in the input/output data.

A last result from the robust adaptive control area that will be used in the thesis is the recent
work of Rohrs et al. [21,22]. In 1985, Rohrs et al. showed an approximate relationship between
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the unmodeled dynamics of a continuous-time plant and the unmodeled dynamics of a discrete-time
model of the plant. This relationship gives insight as to how to choose the sampling period in a
sampled-data adaptive control system so as to avoid the deleterious effects of the high-frequency
unmodeled dynamics. This result is used in the thesis to translate the continuous-time assumptions
of the robust estimator to an analogous set of discrete-time assumptions.

1.2.2 Parameter Estimation

The thesis will use several results from the field of parameter estimation. Young [23]
provides a thorough survey of this field up to 1980. As has already been mentioned in the
preceding subsection, time-domain parameter estimators such as the least-squares algorithm will be
used. Goodwin and Sin [13] provide a good summary of projection and least-squares type
parameter estimators. In addition to time-domain estimation techniques, we will be using
frequency-domain estimation techniques. Ljung and Glover [24] discuss the complementary nature
of time and frequency-domain estimation techniques. In Ljung [25,26] the "empirical transfer
function estimate” (ETFE) is introduced. This ETFE is computed using the Fourier transforms of
finite-length input/output data of the plant. In [25], Ljung finds bounds on the effects of using
finite-length data to compute the ETFE, for strictly stable plants. The extensive work of Ljung
provides the background for the development of the frequency-domain estimation techniques of this
thesis. The area of closed-loop identification is surveyed in the 1977 paper by Gustavsson, Ljung
and Soderstrom [27].

1.2.3 Signal Processing and Sampled-data Control

To implement the various spectral calculations involved in our robust estimator, we will have
to make use of some results from the signal processing field. Most of the needed results are
well-known and are contained in the books by Oppenheim and Schafer [28], and Rabiner and Gold
[29]. We will also make use of many results from the area of sampled-data control. In particular,

the books by Franklin and Powell [30], Astrom and Wittenmark [31], and Ackermann [32] will be
used. '
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CHAPTER 2.
MATHEMATICAL PRELIMINARIES

In this chapter, we will present the notation and definitions that will be used in the thesis as
well as some results and theorems that will be useful later on. Specifically, we will present
theorems that will enable us to bound the error due to using finite-length data in our computation of
frequency-domain estimates.

2.1 Preliminaries and Notation
2.1.1 Notation

In this subsection, we present some definitions. The following notation will be used to
represent various transforms of the signal x. We denote a continuous-time signal by x(t). The

Laplace and Fourier transforms of x(t) are denoted by X®(s) and X (jw), respectively, where the
superscript 'c’ denotes the fact that they are transforms of a continuous-time signal. We denote the
timc-sampied version of the continuous-time signal x(t) by the discrete-time signal x[n] where n is
an integer and x[n]=x(nT) where T is the sampling period. The z-transform of the discrete-time
signal x[n] is defined by

o0

X(z) = z x[n] z ! =.Z{ x[n] }. ' (2.1.1)

Nn=-co

The z-transform of x[n] on. the unit circle is called the discrete-time Fourier transform (DTFT) and
is defined as follows

o0

X@E®Ty = Y x[n]ed(@Dn, 2.1.2)
n=-co
We define WN=e'j(2n/N) where N is a positive integer. (2.1.3)

This allows us to define the N-point discrete Fourier transform (DFT) of x[n], at the N frequency
points, '

O)k=(k/N) o, fork=0,...,N-1, 2.1.49)

where w =27/T is the sampling frequency. We denote the N-point DFT by
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Xn(oy) = Fl xin] ) ’ where k is an integer and
k= N/wg
N-1
XN@Y = 2 x[n] Wikn fork =0,...,N-1. 2.1.5)
n=0

Further, we define the inverse N-point discrete Fourier transform of Xp(ay ) as follows,

x[n] = F-In{ Xn(@y) } where

N-1

xin] =1 2 Xn(@p Wy'kn for n=0,...,N-1 (2.1.6)
N k=0

Since we will not always be working with N-point sequences that begin at 0, we define the
following version of the DFT and inverse DFT for a sequence of N points ending with time index
n.

n

XMy = FB(xml) | = XY x[m] W@ 2.1.7)
k=mkN/0)S m=n-N+1
fork=0,...,N-1

N-1
xim] = F- LM XM o} = 1 2 XyNayp) Wik (2.1.8)
N k=0

form=n-N+1,...,n.

A useful recursive equation for computing XNn((ok) from XN“'I((ok) can be derived from the

above definitions and is given as follows
XN @) = XNl + (x[n] - x[n-N]) WpKD, fork=0,...,N-1. (2.1.9)

We will now derive a simpler version of Eqn. (2.1.9) to yield a recursion that doesn't have WNkn

as a multiplier. Define the spectrum of N-points of x[n] by
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n

KN = X xlm] Wkmn) = x iy wygkn (2.1.10)

m=n-N+1

fork=0,...,N-1.
Thus, the spectrum of x[n] and its DFT, as defined in Eqn. (2.1.7), have the same magnitude.
Now, using Eqn. (2.1.9) we can show that

XNy = XN L) WK + (x[n]-x[n-N]), fork=0,...,N-1. 2.1.11)
See Rabiner and Gold [29, p.387] for more details.

2.1.2 Sampling of Continuous-time Signals

In this subsection, we show the relationships between: 1) the Fourier transform of a
continuous-time signal x(t); 2) the DTFT of the corresponding discrete-time signal x[n] resulting
from the sampling of x(t); and 3) the DFT of x[n]. Further, we note some special cases of these
relationships.

The DTFT of x[n] can be.found from the Fourier transform of x(t) as follows

x@®T) = 1 X XSG +jray), 2.1.12)
r=-c0

1
T
where r is an integer and again @, is the sampling frequency. If we assume that X%(jo) is
bandlimited to the range -(msl2) <®< (mSIZ), then

x@°Ty = (/1) X°(jw). (2.1.13)

If x[n] is of finite duration, for example if x[n]#0 only for n=0, . ., N-1, then the N-point

DFT of x[n] and the DTFT of x[n] are equal at Wy,
Xn(ep) =X(EeloT) fork=0,..,N-1. (2.1.14)

=0y ,
However, consider the infinite-length signal y[n] and the finite-length signal yf1[n] defined as

yglnl = 1 yln], forn=0, .., N-1 (2.1.15)

0, otherwise
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We can write

yaln]l = win] y[n] (2.1.16)
where

w[n] = 1, forn=0,..,N-1 2.1.17)

0, otherwise.

It can be shown that the DTFT of w[n] is

wEI?Ty = e JOTN-1/2) Gn(wTN/2) / sin(wT/2). (2.1.18)
The well-known relationship between the DTFTs of yg[n]and y[n] follows. See Oppenheim and
Schafer [28, p.239] for details.
/T
Ya©®T) = (12r) | Y(EPT) wEe@)T) gu. (2.1.19)
-1/T

Finally, since the DTFT and the N-point DFT of yg[n] are equal at ey, we find that

/T
YN = @2m) | YERT) wel@cO)T) gu, fork=0,..,N-1. (2.1.20)
/T
 In summary, we have shown how to compute the DFT of a sampled signal given the Fourier
transform of the infinite-length, continuous-time signal from which the sampled signal was
derived. First, Eqn. (2.1.12) is used to compute the DTFT of the sampled signal from the Fourier
transform, and then Eqn. (2.1.20) is used to compute the DFT from the DTFT.

2.2 Signal Processing Theorems

In this section, we will develop new results that can be used to bound the effects of using
finite-length data to compute frequency-domain quantities. Later, in Section 5.2, the

frequency-domain estimate of a stable, causal, transfer function H(ejmT) will be computed based
on the N-point DFTs of the transfer function input and output signals. We will now derive a new
theorem that can be used to bound the error in the frequency domain between this DFT derived
frequency-domain estimate and the true transfer function.
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Theorem 2.1: Let y[m] = h{m]su[m], where h[m] is an infinite-length, causal, impulse response

with all its poles in the open unit disk. We denote the DTFT of h[m] by H(ejmT); and the DFTs of

the N-points of u[m] and y[m] ending with time index n, by UN—“(mk) and YNn((ok), respectively.

- Then,

YN@p) = HE®%T) Uy(o) + Ex(@), fork=0,..,N-1, 2.2.1)

where the discrete function Ex(co, ) is given by

EN™ep) = 2 hip] WP (U Play) - UnN™ay) ), fork=0,..,N-1, (2.2.2)
p=1

where Wy is defined in Eqn. (2.1.3).

Remark 1: The function EN"((ok) is the error in the frequency domain, at time index n, due to the

use of finite-length data. That is, if the DTFTs (based on infinite-length data) of u[m] and y[m]
were used in Eqn. (2.2.1) instead of the DFTs (based on finite-length data), then there would be no

error term En"(oy ). Note that the function EN"(ey) / UN™(w,) is the error in the frequency

domain between the DFT derived frequency-domain estimate of H(ej ka) and the true transfer

function H(eJ¥kT),
Proof: We know that
YEI%T) = HE%T) UE%T), fork=0,.. N-1, (2.2.3)

where U(ej (’)kT) and Y(ej(’)kT) are the DTFTs of u[n] and y[n], respectively. Since
n-N

YEOKT) = 2 ym] Wikt + Yiw) + D, ylm] WK, (2.2.4)
m=-co m=n+1
fork=0,..,N-1,

and a similar expression holds for U(ej C')kT), we can write
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n-N oo
Ypay) = HEIOKT) [ X ufm] WK™ + UnP(o + 2 ulm] WD ]
m=-o0 m=n+1

n-N oo
S0 X ymlWNKT + X y[m] Wk ] 22.5)

m=-oo m=n+1

fork=0,..,N-1.
It can be shown that

n-N n-N
Y, ylm] WK™ = h{0] { 2, ufm] WK )
ms=-oo m=-co
oo n-N n-N
+ X hpIWNKP (X um]WnK® - X ufm] W™ ) (2.2.6)
p=1 m=-oo : m=n-N-p+1
fork=0,..,N-1.
So, we can show that
A n-N n-N
HEOkT) D, ulm] Wpk® - 2, ym] Wak® =
m=-oo m=-co :
oo n-N
+ 2 hPIWN®P { X ulm] WK ) 22.7)
p=1 m=n-N-p+1

fork=0,..,N-1.
Similarly, it can be shown that

HEOT) 2, um] WD - D, yim] WK =

m=n+1 m=n+1
0o n
- 2 hPIWN®P {2 ulm] Wpkm ) (2.2.8)
p=1 m=n-p+1

fork=0,..,N-1.
Using Eqns. (2.2.1), (2.2.5) and (2.2.7-8) we find that

oo n‘N n
EN'@p = 2 hpl WP {2, um]WrK™ - X um] WK™ ) (22.9)
p=1 m=n-N-p+1 m=n-p+1

fork=0,..,N-1.
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Eqn. (2.2.2) now follows using the definition of Eqn. (2.1.7).
Q.E.D.

Later, in Section 5.2, it will be useful to be able to find a magnitude bound on EN“((ok).

The following theorem provides such a bounding function by using only a finite summation and
therefore can be implemented in practice.

Theorem 2.2: Under the assumptions of Theorem 2.1 we find that given some finite integer M, the

magnitude of ENn(cok) is bounded for each k as follows,
M-1
ExN™ el < 2. h{pl UNPP(ay) - Upa)! +
p=1

(2.2.10)
2umax 2 phipll, fork=0,..,N-1,
p=M
where up,. = sup lu[m]l.
m
Proof: Using the triangle inequality and Eqns. (2.2.2) and (2.2.9) we find,
M-1
Bl < X hp]l Up"P(wy) - UnPa)! +
p=1
oo n-N n
+ 2 hpll Y uml WKMo Y u[m] wykm | (2.2.11)
p=M m=n-N-p+1 m=n-p+1
fork=0,..,N-1.
Since,
n-N n
2 umWNKT . X ufml Wk <
m=n-N-p+1 =n-p+1
n-N n
2 hmll + X lhmll < 2ug, p 2.2.12)
m=n-N-p+1 m=n-p+1

we conclude that Eqn. (2.2.10) is true.
Q.E.D.
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Corollary 2.1: Under the assumptions of Theorem 2.2,
Ex™@p)! < 2Umax 2 phipll, fork=0,..,N-1. (22.13)
p=1

Proof: Choose M=1 in Theorem 2.2. This corollary is closely related to Theorem 2.1 in Ljung
[26].

For later reference, we rewrite Eqn. (2.2.10) in terms of the spectrum of u[n] as defined in
Eqgn. (2.1.10).

M-1
ExM ! < 2 hipll TN Pey) Wi kP - Tap)l +
p=1
2up, X plhipll, fork=0,..,N-1. (2.2.14)
p=M

Note that the above bounding function also bounds the magnitude of the error between ?N“(a)k)

and HeI%T) T, for k=0, . ., N-1.

Later, in Sections 4.3 and 4.4, we will be interested in computing the maximum output
signal of a transfer function for which we have a magnitude bounding function in the frequency
domain. The following theorem will be useful in this respect.

Theorem 2.3: Let y[m] = h[m]su[m], where h[m] is an infinite-length, causal, impulse response
with all its poles in the open unit disk. We denote the DTFT of h[m] by H(ejwkT), and the DFT of

the N-points of u[m] ending with time index n, by UNn(mk). Then,

N-1
yiol =1 2, HEkT) Upney) Wr'kD + efnl, | (2.2.15)
N k=0
where
e[n] = 2, hip] (uln-p] - uln-(p modulo N)] ). (2.2.16)

p=N
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Remark 2: The signal e[n] is the error due to the fact that the impulse response h[n] is of infinite

length. We note from Eqn. (2.2.16) that if h[p]=0 for p = N, then e[n]=0, Vn.

Proof: From the definition of Eqn. (2.1.8) we find that
N-1
yInl = 1 X Yo Wk, 2.2.17)
N k=0
Using Eqn. (2.2.1) from Theorem 2.1, we find that
N-1 N-1

yil = 1 X HET) Uyop Wk + 1 X Eniay) Wyke 22.18)
N k=0 N k=0

Thus, the second term of the above equation is equal to e[n]. This will allow us to use Eqn.
(2.2.9) from Theorem 2.1 to find e[n]. However, first we will find an alternate form of Eqn.
(2.2.9). We observe that :

n-N n ' n
2 umWim - Y um W™ = Y (u[meN] - ufm]) Wykm
m=n-N-p+1 m=n-p+1 m=n-p+1
fork=0,..,N-1, (2.2.19)

since Wy XN= 1 for integer k. Then, using Eqns. (2.2.9) and (2.2.19) and the inverse DFT of
N & : g Eq

Eqn. (2.1.8), we can exprcss ¢[n] as follows.

eln] = 2 2. hp] WnkP Z (ufm-N] -u[m])kam Wk (2220
N k=0 p=1 m=n-p+1
Rearranging the summations yields
- n
eln] = X hlp] 2 (ulm-N]-u[m]) 1 Z wgk(m-n+p), (2.2.21)
p=1 m=n-p+1 N k=0
Noting that
N-1
1 ZWNk(m‘n"‘P) =11, form=n-p+iN
N k=0

0, otherwise (2.2.22)

where 'i' is an integer, we find
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n N-1
Y (ulmN]-ufm]) 1 X wyk@n+p)
m=n-p+1 N k=0

(2.2.23)
=10, forp=1,..,N-1

u[n-p] - u[n-(p modulo N)], forp>N.

Eqn. (2.2.16) follows from Eqns. (2.2.21) and (2.2.23).
Q.E.D.

We want to be able to find a magnitude bounding function on y[n]. The following theorem
provides such a bounding function by using the inverse DFT and the results of Theorem 2.3.

Theorem 2.4: Under the assumptions of Theorem 2.3 we find that, for a real-valued impulse
response h[n] and a real-valued signal u[n], the magnitude of y[n] is bounded at each n as follows,
(N/2)-1
iyl < 1 (HEODI UM et + 2 20 HEOKD! U@y
N k=1

+ HEN2 D U o) ) +2Umax 2 lhipl), (2.2.24)
p=N

where up,4 = sup lu[m]l, and where we have assumed that N is even. An alternate form of the
m

theorem can easily be proven for the case of an odd value of N.

Proof: By applying the triangle inequality to Egn. (2.2.15) and noting that IWN'an=1 we find,
N-1

iyl < 1 2, HEKDI U @)! + lefnll. (2.2.25)
N k=0

From Eqn. (2.2.16) we obtain a bound on le[n]l,
le[n]l < Z th[p]! I u[n-p] - u[n-(p modulo N)] )| < 2 upax 2 Ih[p]l. (2.2.26)
p::N p=N

To complete the proof, we observe that since h[n] and u[n] are real-valued sequences, then
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HET) = HECN-KT), 2.2.27)
IUNn(mk)l = IUNn(m(N_k))I, (2.2.28)
respectively, for k=1, .., (N/2)-1. Eqn. (2.2.24) follows from Eqns. (2.2.25-8).
Q.E.D.

In this chapter, we have derived several new signal processing results which will be used in
the later parts of this thesis. Specifically, we will use the time-domain bounding results of
Theorems 2.3 and 2.4 in Chapter 4 where we develop a robustified time-domain parameter
estimator. In addition, the frequency-domain bounding results of Theorems 2.1 and 2.2 will be
used in our development of the frequency-domain bounding method in Chapter 5.
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CHAPTER 3.
ROBUST ESTIMATION PROBLEM STATEMENT

3.1 Introduction

The purpose of this chapter is to define the robust estimation problem. First, we will
describe the adaptive control scenario in which we plan to use the robust estimator. Then, in
Section 3.2, we list the assumptions concerning the continuous-time plant and the disturbance.

In Section 3.3, we will develop a discrete-time model of the continuous-time plant. Discrete-time
impulse response bounds for the plant and disturbance DFT bounds are derived in Sections 3.4 and
3.5, respectively. The results of these sections will enable us, in Section 3.6, to form a list of
assumptions concemning the discrete-time plant model and the disturbance. These assumptions can
be derived from the assumptions of Section 3.2 concerning the continuous-time plant and the
disturbance or, alternatively, they can serve as a starting point for the statement of the robust
estimation problem entirely in discrete-time. In Section 3.7, we present the technical details of the
robust estimation problem statement and provide an overview of the solution.

Problem Scenario: Sampled-data Adaptive Control

It is assumed in this thesis that a continuous-time plant is being controlled by a discrete-time
controller, as is shown in Figure 3.1. The continuous-time, single-input single-output (SISO)

plant Gctrue(s) is controlled by a discrete-time compensator K(z). Gctme(s) has unmodeled

dynamics and an additive output disturbance d(t). The sensor noise T(t) has most of its energy at

high frequencies. In this thesis, we will assume that the sensor noise 1(t) can be effectively
eliminated by the low-pass, anti-aliasing filter F,(s) or by the low-pass nature of the plant itself.

Consequently, for the remainder of the thesis, we will ignore the effects of sensor noise. Since the
plant is preceded by a zero-order hold, we can use a discrete-time model to represent the transfer

function from u[n] to y[n] as is shown in Figure 3.2. Finally, we can represent the closed-loop
control system, ignoring the sensor noise and the filter F,(s), by the discrete-time system that is

shown in Figure 3.3. In this figure, the discrete-time signals r[n], d[n] and y[n] are the sampled
versions of r(t), d(t) and y(t), respectively.
One of the goals of this thesis is the development of a discrete-time robust estimator which

can be used to identify Gy, (2) in a closed-loop and provide this information to an on-line
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control-law update algorithm. Specifically, the plant is controlled by a fixed-structure,
discrete-time compensator whose parameters are updated infrequently using information from the
robust estimator. This adaptive control scheme is illustrated in Figure 3.4. In order to develop a
discrete-time model of the partially known plant, we must make some assumptions about the
continuous-time plant. In the following section, we list these assumptions as well as assumptions
concerning the disturbance and the input signal.
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Disturbance
Anti-aliasing Compensator Continuous-time d(t)
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r(t) uln] ST
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Figure 3.1: Discrete-time Control of a Sampled-data System.
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Figure 3.2: Discrete-time Model of the Continuous-time Plant.
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Disturbance
din]
Discrete-time output
Reference Compensator Plant utpu
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Figure 3.3: Discrete-time Closed-loop System.
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Figure 3.4: Discrete-time Adaptive Control System.
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Disturbance
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Figure 3.5: Continuous-time Plant and Disturbance.
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Figure 3.6: Discrete-time Plant and Disturbance.
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3.2 Continuous-time Assumptions on the Plant and Disturbance

Consider the system of Figure 3.5 where the continuous-time plant Gctme(s), which we are

trying to identify, has input u(t), output y(t), and an additive output disturbance d(t). We make the
following assumptions, which we label for later reference with the letters 'AC' referring to the fact
that they are assumptions concerning the continuous-time plant, disturbance and input. In the
remaining sections of this chapter we will develop a set of discrete-time assumptions from the
following list of continuous-time assumptions. When the discrete-time assumptions are
enumerated in Section 3.6 we will discuss why each assumption is needed.

AC1) Plant Assumptions. We assume a structure for the nominal model of Gctme(s) anda

magnitude bounding function on the unstructured uncertainty. That is, we assume that

GCrye(s) = G(s,6%) [1 + 8°(s)] (3.2.1)

where Gc(s,eco) is a nominal model, Scu(s) denotes the unstructured uncertainty of the plant, Gco

is a vector of plant parameters and we assume,

ACL.1) G%s,6%) =BS(s) / A%(s), (32.2)
where the polynomials B(s) and AC(s) for the continuous-time system are,
BC(s) = bSos™C1 + b€, s@C1-1) 4 +C 0, (3:2.3)
AS(s) = s1°1 - 2% stne-1) 4 . €., ncy >mcy, (3.2.4)

and where the parameter vector of the continuous-time plant is,

8% =[ac,...a%¢; b b ... bomcy 1T, (3.2.5)

AC1.2) 6%, ©F, where ©C is a known bounded set. (3.2.6)
This assumptions means that we have some coarse prior idea of what the parameters are.
ACL3) 18, (o)l < AS,(w), Va. (32.7)
This assumption is our characterization of the high-frequency unmodeled dynamics. While
other characterizations are possible, this frequency-domain approach has been shown to have
pragmatic utility [34].

ACL4) 1d5° (jw)dal < VO, (o), Vo. (3.2.8)

This assumption tells us how smooth the unmodeled dynamics are. This assumption is
required since we will be using DFTs to perform our frequency-domain calculations and will
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need to compute the maximum variation of the plant in between the discrete frequency points.
ACL.5) G®s,8%) and 8°(s) and, hence, G%(s,8%)) &,(s) have all their poles in the open

left-half plane for all Gcoe ©F. Thus, we assume that the true plant is asymptotically stable.

AC1.6) A bounding function on the magnitude of the impulse response of the true plant,
denoted by g,e(t), is known such that

(]
lgrue®! < %, byt eC3i), fort>0 (3.2.9)
i=1

where r; is a positive integer, and b; > 0, a; > 0 (i.e. poles in the open left-half plane) and I

are known for i=1, .., I;C. g, ..(t) is assumed to be causal. This assumption is saying that

| we know some coarse bounding function on the impulse response of the partially known
‘ plant. If we know that the system has no double pole, then a simple decaying exponential

j beatof appropriate time constant and gain satisfies this assumption. If the system is known
| to have a double pole, then we must use a bounding function of the form bt e &, Eqn.
‘ (3.2.9) is a general expression allowing summations of impulse response bounds, for
b
example by €210 + b, t e(20),
ACL.7) A bounding function on the magnitude of the impulse response of the additive plant
error, that is, we assume we know a bounding function of the same form as Eqn. (3.2.9) on
lgrue® - 8(1,9,9)|, for all Gcoe ©°, where 8(t,8,,°) is the impulse response of Gc(s,eco).

This assumption means that we know some coarse bounding function on the impulse
response of the additive plant error that is due to the unmodeled dynamics.
AC1.8) zero initial conditions.

Thus, our a priori assumptions are that we know mc, and nc,, the degrees of BC(s) and

AC(s), respectively, and the bounding functions Acu(ico) and ch(ico). Further, we assume that the

parameter vector eco is in some known bounded set ® ¢, which is only a coarse and, hence, large a

priori estimate of the parameter space.
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AC2) Disturbance Assumptions. We assume that the unmeasurable disturbance d(t) satisfies:
AC2.1) ld(®)l < dpaxs V1, and (3.2.10)
AC2.2) IDC(w)l < DS(jw), V. (32.11)

where the constant d ;5 and the function DES(jw) are known a priori.

AC3) Input and Qutput Signal Assumptions. We assume that both the input signal u(t) and the
output signal y(t) are measurable and that u(t) is bounded.

AC3.1) lu@®)! < upay, Vt, where up,y is known a priori. (3.2.12)

Remark 1; Assumption AC1.7 will only be used in the development of the time-domain parameter
estimator of Chapter 4.

Remark 2;: Assumptions AC1.2-1.4 and AC1.6-1.7 are quite different from the classical MRAC
assumptions, which are listed in Subsection 1.2.1. We do assume knowledge of the structure of
the "nominal" plant model, and hence its relative degree and its maximum order. However, we do
not assume that the plant is minimum phase nor do we make non-pragmatic assumptions about the
plant, such as knowledge of: 1) the sign of the high-frequency gain and 2) an upper bound on the
high-frequency gain.

3.3 Development of a Discrete-time Plant Model

In this section, we will show how the assumptions of the previous section, concerning the
continuous-time plant and the disturbance, can be used to find their discrete-time counterpart,
which is very similar. In Subsections 3.3.1-3, we will assume that the continuous-time nominal
model of the plant is known along with magnitude bounding functions on the continuous-time
unstructured uncertainty and the derivative of the continuous-time unstructured uncertainty as
assumed in AC1.3-4. In Subsection 3.3.4, we will discuss the issues that arise due to the fact that
we do not know the parameters of the nominal model; rather, we only know that they lie in some
known bounded set.
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3.3.1 Development of a Discrete-time Nominal Plant Model

In this subsection, we consider the continuous-time plant G rue(s) whose input is generated

by a zero-order hold. We will use the zero-order hold equivalent of the continuous-time plant to
find a discrete-time model of the plant. The anti-aliasing filter, in Figure 3.1, could be considered
as part of the plant. However, for simplicity, we will ignore the effects of the anti-aliasing filter in
this development. The true discrete-time plant, using a zero-order hold equivalence is given by,

Girue@ = (1-z71) Z{ (1/5) GCyrye(s) ). (3.3.1)

Similarly, given a continuous-time nominal model GS(s), the discrete-time nominal model G(z) can
be found as follows,

G@) = (1-z1HZ{ (1/s) Gs) ). (332)
See Franklin and Powell [30, p.62] for details. :

3.3.2 Development of a Bounding Function on the Magnitude of the Discrete-time Unstructured

Uncertainty

We seek a bounding function on the magnitude of the discrete-time unstructured uncertainty.
To find this, we must first make several definitions. The transfer function of a zero-order hold is
given by,

Hyon(s) = (1-eT) /s, (33.3)
which allows us to define the transfer function of the true plant and the zero-order hold,

GCtrue,zoh(®) = Hyon(S) GCprye(s)- (3.3.4)
Since there will always be some unstructured uncertainty in the continuous-time system, we write

GCryue(s) = GS(s) [1 +8°(s)] (3.3.5)

where G(s) is a nominal model and 8°u(s) is the unstructured uncertainty. We assume a
magnitude bounding function on the continuous-time unstructured uncertainty, that is,

B, Go)l < AC (), Vo, (3.3.6)
as was assumed in AC1.3. For later use, we define

Gczoh(s) = H,oh(s) GS(s). (3.3.7)
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We develop a similar kind of plant description in discrete time. The discrete-time model of
the plant that results from sampling the continuous-time transfer function of the plant and the
zero-order hold is,

Girge@®T) =1 X GCuryerzoneriray), (33.8)
T r=-o00
where @ is the sampling frequency and T is the sampling period. Using Eqns. (3.3.4-5) and
(3.3.7-8) yields

Girge @9 =1 2 GCygpo+irag) [1 + 8y (wray)]. (3.3.9)
T r=-00
We define the desired form of the true discrete-time plant,

Grye(@ = G@) [1+3,(2)] (3:3.10)

where the discrete-time nominal model G(z) is defined by Eqn. (3.3.2). It can be shown, using
Theorem 4.1 of Astrom and Wittenmark [31], that

Ge9T) = (1-e39Ty Z{ (1/s) GS(s) } (3.3.11)
z=elOT
=1 2 G, onjar+jrag). (3.3.12)
T r=-00

It was shown by Rohrs et al. [21] that, with reference to the nominal model of Eqn. (3.3.12),
which we have shown is the same as the nominal model of Eqn. (3.3.2),

5,E9T) = (1 2, G, piorrag) 8, Gatirag) ) / GE9T), Vo. (3.3.13)
T r=-e0

Eqn. (3.3.13) follows from Eqns. (3.3.9-12). Then, using the triangle inequality and Eqn. (3.3.6)
yields,

5,197 < A @D, Vo (33.14)

where

M8

AE9T) = { IGE oG+t AS Ga+ray) } / 1GECT), Vo. (3:3.15)

=
[

-00
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Recalling the definition of G€,,,(j) and observing that

1 - e (HTOIT) _ (1.¢d0Ty v (3.3.16)
we can factor this term out of the numerator of Eqn. (3.3.15) to yield

A (€I0T) =

-edoTi 1 Y, IGE(jorjrar) / Garkiragl AS (a+irag) } /1GEICT), Vo,  (3.3.17)
T r=-c0
In practice, the sums in Eqns. (3.3.12), and (3.3.13) will usually be dominated by the r=0 terms.
When the r=0 terms dominate the sums, Eqn. (3.3.13) yields the approximate equality,

8,@°T) = & (), for-o2<w<a2. (3.3.18)

Similarly, it can be shown that

A, @%T) = A° o), for-0g2 <o <ay?, (3.3.19)
when the r=0 terms dominate the sums.

In summary, in this subsection we have shown how to find a magnitude bounding function
on the discrete-time unstructured uncertainty. To find this bounding function, we needed a
continuous-time nominal model from which we found a discrete-time nominal model; in addition, -
we needed a magnitude bounding function on the continuous-time unstructured uncertainty. Later,
in Section 9.2, it will be shown ﬁlrough an example that Eqn. (3.3.19) will be a good
approximation for many problems. Thus, for many problems it will not be necessary to compute
Eqn. (3.3.17). Appendix A contains several useful results that can aid in the computation of Eqn.
(3.3.17) should the need arise.

3.3.3 Development of a Bounding Function on the Magnitude of the Derivative of the Discrete-time

Unstructured Uncertainty

We seek a bounding function on the magnitude of the derivative of the discrete-time
unstructured uncertainty. This derivative bounding function is a description of how smooth the
discrete-time unstructured uncertainty is. Taking the derivative of Eqn. (3.3.13) yields
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d8,(eIT) / do =

(GEOT)[1 D, ((dGC,0n/dw) 8 + GCpop (5%, /dw))]
T r=-co. (3.3.20)

L1 X G 8% 1dGE9T)/ dw) }/GEI®TY, Vo,

T r=-e0

where we have omitted the arguments of the summands for clarity. From Eqn. (3.3.12) we find
that

dGE®Ty /dw = 1 X, (dGC,pGv) /dv) |. (3.3.21)
T r=-co V=0+HT W
Combining Eqns. (3.3.13), and (3.3.20-1) yields

d8,@9T) /do = ( 1 X [(8yGetjray) - 8,@9T) ) (G on(v) / dv)

T r=-e0 V=0+T00g

+ GC o (or+irmg) (d8C,Gv) / dv) | 1 1/G(E9T), Vo (3.3.22)
V=0+HWg
We note that if the r=0 terms dominate the sums in Eqns. (3.3.12-13) and (3.3.22), then Eqn.
(3.3.18) is true and

d5,(e19T) / do = 8% () / do, for -0y2 < < @ 2. (3.3.23)

We can now find a magnitude bounding function on d8u(ej‘°T)/dco by using the triangle inequality,
assumptions AC1.3-4, and Eqn. (3.3.22). Thus,

13,(9T) / dal < V9T, Vo (3.3.24)
where
V9T =( 1 X [(AS,Gotirwg) +AyE®T) ) 1dGE,op () / dsl
T r=-c0 $=jWH+rog
+ IGC,p (j@+rol VE, (jo+irag) 1) /1G6(EPT), Vo. (3.3.25)

and where
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IGConGartiragl = 11-e39T11G arirag) / fotirag, Vo (3.3.26)

and

IdGC, () / dsl | = 11-e 39T 1a(GE(s)/s) / dsl
S=jOHrOg s=jartjrag

+ T IGS(jw+Hragl / jo+jrag, Yo. (3.3.27)

In Eqn. (3.3.25) we have been forced to use a very conservative magnitude bound for the term

(8cu(jm+jrcos) - 8u(ej(°T)) since we do not have any phase information about Scu and Su. It may

be possible to derive other, less conservative, bounding functions on the magnitude of the
derivative of the discrete-time unstructured uncertainty. That is, from Eqn. (3.18) we expect

considerable cancellation in the term (8°u(i(o+jr(os) - Su(ejmT)) so that a new bounding function

using this cancellation could be significantly tighter than Eqn. (3.3.25).

In summary, in this subsection we have shown how to find a magnitude bounding function
on the derivative of the discrete-time unstructured uncertainty. To find this boundin g function, we
needed a continuous-time nominal model from which we found a discrete-time nominal model; in
addition, we needed magnitude bounding functions on the continuous-time unstructured uncertainty
and the derivative of the continuous-time unstructured uncertainty. Later, in Section 9.2, it will be
shown through an example that Eqn. (3.3.23) is a good approximation for many problems. Thus,
for many problems it will not be necessary to compute Eqn. (3.3.25). Appendix A contains several
useful results that can aided in the computation of Eqn. (3.3.25) should the need arise.

3.3.4 Treatment of the Case of Nominal Models with Structured Uncertainty

In this subsection, we will discuss the modifications in the results of Subsections 3.3.1-3
that are necessary when the continuous-time nominal model has structured uncertainty. That is, it
was assumed in these subsections that we knew the continuous-time nominal model from which we
could find the discrete-time nominal model. In fact, with reference to assumptions AC1.1-2, while
we know the structure of the continuous-time nominal model, we do not know its parameters. We

only know that the nominal model parameters lie in some bounded set ©°.

Using Eqn. (3.3.2), we can find the structure of the discrete-time nominal model from
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AC1.1. In addition, using Eqn. (3.3.2) and given assumption AC1.2, that is, §°e ©°, we can find

a set © such that the parameter vector 8 of the discrete-time nominal model satisfies 8 ©. That s,

Eqn. (3.3.2) implicitly defines a map from the bounded parameter space @€ to the parameter space

©. We denote this map by f(¢). Ackermann [32, p.95] summarizes the relationship between the
continuous-time and discrete-time parameters using a state-space representation of these systems.
In this thesis, we view the map f(+) as an explicit map that can be found for any given example
using the methods in Franklin and Powell [30]. This methodology will later be illustrated by an
example, in Section 9.2.

In summary, from AC1.1-2 and the application of Eqn. (3.3.2), we have the following
continuous-time and corresponding discrete-time nominal model structures,

G%(s,8%), with 8¢ € ©F, and (3.3.28)

G(z,9), with8 =£f(0% e O, (3:3.29)
where the set © is defined as follows,

© = {0816=1(6%,for6€ec ©°}. (3.3.30)

We can now find modified forms of the results of Subsections 3.3.2-3. The new magnitude
bounding functions will be formed by maximizing the expressions of Eqn. (3.3.17) and Eqn.

(3.3.25) over the parameter space ©C. Thus, from Eqn. (3.3.17), the new bounding function on
the discrete-time unstructured uncertainty is given by

Ay €I9Ty = 130T .

18

sup [ {1 (IGC(0+jrag,8°) / (jo + jragl A (o+jreg) ) }/ IGEI®T £6%)1 1, Vo.
gCc@C T r=-ee

i

(3.3.31)
Further, from Eqn. (3.3.25), the new bounding function on the derivative of the discrete-time
unstructured uncertainty is given by
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Vu(ei OJT) =

sip [{(1 2 ((ACyGoHrog) + Ay@el®T) 1dGE, 1 (s.8°) / dsl
0Cc@¢ T r=-

s=jrHjrag
+ IGopGe+rog8%) Vo Go+irag) ) } /1IGELT (0% 1, Vo  (33.32)
where
G onGertirag 89 = 11-e90TI G w+jra 89 / lin+irag, Ve, and (3.3.33)
1dGC,on(s:86) /dsl | = 11-e39T] 1d(GS(s,6Ys) / dsl
S=jo+Hrog S=j+Hrog
+ TIGE(jarrag0) / io+rag , V. (3.3.34)

The bounding function of Eqn. (3.3.31) can be used for Au(ejmT) in Eqn. (3.3.32). Alternatively,

one could substitute the expression of Eqn. (3.3.31) into Eqn. (3.3.32) and compute the supremum
for this expression, however, it would make the computation of this expression quite complex.

3.4 Discrete-time Impulse Response Bounding

In this section, we will show how the magnitude of the discrete-time impulse response of a
system formed using the zero-order hold equivalence, can be bounded by using a magnitude
bounding function on the impulse response of the corresponding continuous-time plant. We will
use these results to derive a discrete-time impulse response bounding function from the
continuous-time bounding function of assumption AC1.6. From Franklin and Powell [30, p.62]
we find that if the zero-order hold equivalence is used, then the discrete-time impulse response

Etrueln] is related to the continuous-time impulse response Ztrue(®) as follows.

nT

Srueln] = | guye®dt, Vn. (3.4.1)
(@-1)T

If grye(D satisfies the magnitude bounding function of assumption AC1.6 of Section 3.2, then we
find
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nT g nT
el € | lggue®ldt < X by [ t@eCab), forn > 1. (3.4.2)
(n-1)T i=1  (@-1T

For the case of r=0, corresponding to a bounding function that is a simple exponential decay b e 2t
it is easily seen that )

nT
b | edtdr = (b/a)(1-e2T)eaT® D), forn>1. (3.4.3)
(n-1)T

Next, we consider the case of r=1, which corresponds to the bounding function b t e 3t This
bounding function is the impulse response of a double pole system, that is, a system with two
identical real poles. In Appendix B, it is shown that for this case,

nT
b | tedtdt = (ba) ([ (/a)(1-eqT)-T1+[nT(1-e2T)]})eT@D), forn>1.

-T
(o-1) (3.4.4)
A general method for the treatment of larger values of r is also presented in Appendix B. For

example, in Appendix B we treat the case of r=2, which corresponds to the impulse response of a
triple pole system. However, most practical situations will not require more than the case of r=1,
which corresponds to a system with a double pole.

3.5 Bounding the DFT of the Disturbance

3.5.1 The Basic Technique

In this section, we consider the problem of finding a magnitude bounding function on the
DFT of the time-sampled disturbance d[n], given a magnitude bounding function on the Fourier
transform of d(t). Thus, as in assumption AC2.2 of Section 3.2, we assume that we know a

magnitude bounding function Bc(j ®) on the Fourier transform of d(t), F{d(t)}, which we denote

by DC(j). That is,

IF{d®}! = IDS(jw)! < DGw), Vo. (3.5.1)
From Eqn. (2.1.12) we find that the magnitude of the DTFT of d[n], which we denote by D(ej(’)T),
is bounded by the function B(e)'(oT) as follows
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DE®T) < DTy =1 X Do +jmy), Vo (3.5.2)
T r=-c0
Using Eqns. (2.1.18) and (2.1.20) it can be shown that
=/T
DNl < (T2m) | D(ePT) Isin((-0)TN/2) / sin((a-v)T/2)! dv
-T/T
fork=0,..,N-1. (3.5.3)

It is a property of the DTFT that if the DTFT of w[m] is W(ejmT), then the DTFT of w[m-n] is

e'janW(eij). Thus, a shift in time doesn't change the magnitude of the DTFT. This fact
allows us to conclude that

/T
DNl < (T/2m) | D(eiPT) sin((@-0)TN/2) / sin((ay-0) T/2)l dv
-n/T
fork=0,..,N-1. (3.5.4)

for all n, where DN“(cok) is defined as in Eqn. (2.1.7).

3.5.2 Treatment of the Start-up Situation

In this subsection, we consider the effects of the disturbance on the robust estimator. Weé
must consider the situation that occurs when the estimator starts up. That is, from the viewpoint of
the estimator, the disturbance d[n] is zero forn < 0. Thus, we define the disturbance,

d*[n] =< d[n], for n=0,1,..

(3.5.5
0, forn<0.

The N-point DFT of d*[m] for the last N points ending with 'n’ is defined, as in Eqn. (2.1.7) by

n .
DN ey) = ZN 1d+[m] WnK®m,  fork=0,...,N-1. (3.5.6)
=n-N+

We are really concerned with the properties of DN*™(e, ), rather than DN™(ey), since DN (o, )

appears in all of our algorithms. However, we note that
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n

DNy = 2_0 d*[m] WK™, forn=0,1,..,N-2,

(3.5.7)
DN™(y), for n>N-1,

fork=0,...,N-1.

Thus, we need only be concerned with the differences between the DFT of DN‘*'“(cok) and

DN™(wy) for n=0, . ., N-2, that is, during start-up. To treat this start-up situation, we first define
the signal,

d*[m] = w"{m] d[m] (3.5.8)
where the window wi[m] is given by,

wl[m] = 1, for m=0,..,n
(3.5.9)
0, otherwise.
From Eqn. (2.1.18) we know that the DTFT of wl[m] is given by
wiel®Ty = e J0TW2) gn(@T(n+1)/2) / sin(@T/2). (3.5.10)

Thus, the DTFT of E"’[n] is given by the convolution,

wi(el0Tyxpe®T), (3.5.11)
which, from the discussion of Section 2.1, we know is equal to the N-point DFT of d*[m] for the

last N points ending with time index n, for @=w,.. Using this information, it can be shown that,

D@ < D@, (3.5.12)
where
BN+n(wk) =
T
@rn) | DEPT) isin((ae-v)Ta+1)/2) / sin(@-v) T/2)l dv,
| -n/T forn=0,..,N-2,
— (3.5.13)
Dp(oy), forn>N-1,

fork=0,..,N-1,
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and wheré wé know from Eqns. (3.5.4) and (3.5.7) that
/T
Dn(wp) = (T2m) | D(eiT) Isin((@-0)TN/2) / sin((-0)T/2)! dv
-n/T
fork=0,..,N-1. (3.5.14)

In summary, we have shown how to compute a magnitude bounding function on the DFT of
the time-sampled disturbance given a magnitude bounding function on the Fourier transform of the
infinite-length, continuous-time disturbance from which the sampled signal was derived. The
expressions that were derived in this section are rather complex. Thus, in practice, we will work
directly with the DFT of some disturbance for which we have some sort of time-domain model.
However, it is important to note that the kind of bounding functions that we have derived in this
section can all be found in terms of the magnitude bounding function on the Fourier transform of
the continuous-time disturbance. The bounding functions of Eqns. (3.5.13-14) will eventually be
used to compute a bound on the error associated with the frequency-domain estimate of the plant.

3.6 Restatement of Assumptions in Discrete-time

In this séction, we list assumptions about the discrete-time plant in preparation for the
statement of the robust estimation problem in Section 3.7. In addition, using the results of Sections
3.2-5, we show that the information assumed in this section about the discrete-time plant and the
disturbance can be obtained from the assumptions about the continuous-time plant and the
disturbance that were listed in Section 3.2.

Consider the system of Figure 3.6 where the discrete-time plant Girye(@)s is the zero-order
hold equivalent of the continuous-time plant of Section 3.2. Girye(2) has input ufn], output y[n],

and an additive output disturbance d[n]. We make the following assumptions, which we label for
later reference with the letters 'AD' referring to the fact that they are assumptions concerning the
discrete-time plant, disturbance and input.

AD1) Plant Assumptions. We assume a structure for the nominal model of Girye(?) and a

magnitude bounding function on the unstructured uncertainty. That is, we assume that

Girye(@) = G(z.8y) [1 +8,(2)] (3.6.1)

where G(z,eo) is a nominal model, 8u(z) denotes the unstructured uncertainty of the plant, 90 isa
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vector of plant parameters and we assume,

AD1.1) G(z8y) =B(z) / A(2), (3.6.2)
where the polynomials B(z) and A(z) for the discrete-time system are,

B(2) = by Z(M1-0D) + by 2@-0-D o+ 4+ by, 2™, (3.6.3)

A@=1-ayz1+. . -ay;z™, n;>m,, (3.6.4)
and where the parameter vector of the discrete-time plant is,

0g=[a1---2n; by by... by 1T, (3.6.5)
AD1.2) 90 € ©, where © is a known bounded set. (3.6.6)

This assumptions means that we have some coarse prior idea of what the discrete-time

parameters are. The bounded set © will be used to compute various a priori bounds in
Chapters 5 and 6.

AD13) 18,E9T) < A,°T), Vo - (3.6.7)

This assumption is our characterization of the discrete-time unmodeled dynamics. In Section
4.4, we use this assumption to find a time-domain bound on the effects of unstructured
uncertainty. In addition, it is used in Section 5.6 to make the frequency-domain estimation
method robust.

AD1.4) 1d8 (e®Dydal < V @°T), Vo (3.6.8)

This assumption tells us how smooth the discrete-time unmodeled dynamics are. In Sections
5.7 and 5.8, we use this assumption to smooth out our bound on the uncertainty and to
bound the inter-sample variations of the uncertainty between the discrete frequency samples
of our bounding function.

ADL5) Gyye(2) and G(z,eo) have all their poles in the open unit disk for all 6, o.

Thus, we assume that the true discrete-time plant is asymptotically stable. This assumption
is required by the frequency-domain estimation method. The relaxation of this assumption is
discussed in Section 10.2.

AD1.6) A bounding function on the magnitude of the impulse response of the true plant,
denoted by g,e[n], is known such that

lgeruelnll < % g; nm) p;n, (3.6.9)
i=1
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where 1 is a positive integer, and g; >0, 0 < p; < 1 (i.e. all the poles of gi,.[n] are in the
open unit disk) and r; are known fori=1, . ., Iy 8tryelnl is assumed to be causal. This

assumption is saying that we know some coarse bounding function on the impulse response
of the partially known discrete-time plant. In Section 5.2, this assumption is used to
compute a frequency-domain bounding function on the estimation error.

AD1.7) A bounding function on the magnitude of the impulse response of the additive plant
error, that is, we assume we know a bounding function of the same form as Eqn. (3.6.9) on

g rueln] - g[n,eo]l, for all Boe 0, where g[n,eo] is the impulse response of G(z,OO).

This assumption means that we know some coarse bounding function on the impulse
response of the additive plant error that is due to the unmodeled dynamics. In Section 4.4,

this assumption is used to make the time-domain parameter estimator robust to the effects of
the unstructured uncertainty.

AD1.8) zero initial conditions.
Thus, our a priori assumptions are that we know m, and n,, the degrees of B(z) and A(z),

respectively, and the bounding functions Au(ej mT) and Vu(ej(’)'T). Further, we assume that the

parameter vector 60 is in some known bounded set ©, which is only a coarse and, hence, large a

priori estimate of the parameter space. We do not assume that the plant is minimum phase as is
done in the classical MRAC approach.

AD?2) Disturbance Assumptions. We assume that the unmeasurable disturbance d[n] satisfies:

AD2.1) ld[n]l < dmax» Vn, and (3.6.10)
AD2.2) the N-point DFT of the signal d*[n), defined as in Eqn. (3.5.5), satisfies

DNyl < { DN ™M@y, for n=0,1,.., N-2

— (3.6.11)
Dy(wy), forn>N-1,

for k=0,..,N-1,
where the constant dmax is known and the time function BN+"(cok) and the constant ﬁN(cok) are

known, for each @y
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AD3) Input and Qutput Signal Assumptions. We assume that both the input signal u[n]} and the
output signal y[n] are measurable and that u[n] is bounded.

AD3.1) lu[n]l < v .y, Vn, where uy,, is known a priori. ‘(3.6.12)

Remark 1; We note that the assumption of a stable plant (AD1.5) and a bounded plant input
(AD3.1) implies the boundness of the plant output. Thus, even in a closed-loop situation the plant
output is bounded. However, such a closed-loop system could exhibit wild oscillations with u[n]

oscillating between +u,, and -up,... We emphasize that this is not the kind of stability that we

are looking for. Instead, we seek a closed-loop system that has all its poles in the open unit disk.

In this case, if the plant control input never saturates, that is, lu[n]l remains less than up,,, then we

have an exponentially stable closed-loop system.

Remark 2: The parameter vector 6, can be thought of as a specific value. However, based on

input/output measurements alone we cannot determine a specific 90 for the nominal model because

of the unstructured uncertainty. That is, if we assume the structure of AD1.1 above and assume
only that
5,2 e S where S = { 8(2) | 18T < 4,E“T), Vo), (3.6.13)

then we can define a smallest set
©* = {01Gye(2) =G(z8) [1 +8,(2)] and d(2) € S) (3.6.14)
in which 6 lies. Thus, 6, ©*CO where only © is known a priori. Note that, in general, ©*

will be a point only when Au(ejmT)=O for all .

Remark 3: As has already been noted, assumptions AD1-3 above can be satisfied using the
information of assumptions AC1-3 of Section 3.2. Specifically,
1) AD1.1-2 follow from AC1.1-2 and the results of Subsections 3.3.1 and 3.3.4.
2) AD1.3 follows from AC1.3 plus AC1.1-2 and the results of Subsections 3.3.2 and 3.3.4.
3) AD1.4 follows from AC1.4 plus AC1.1-3 and the results of Subsections 3.3.3 and 3.3.4.
4) AD1.5 follows from ACL1.5.
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5) AD1.6 and AD1.7 follow from AC1.6 and AC1.7, respectively, and the results of Section
34.

7) AD1.8 follows from AC1.8 and the assumption that the zero-order hold has zero initial
conditions.

8) AD2.1 and 3.1 follow from AC2.1 and 3.1, respectively.

9) AD2.2 follows from AC2.2 and the results of Section 3.5.

3.7 Discrete-time Statement of the Robust Estimation Problem and Solution
Summary

In this section, we will state the robust estimation problem and then outline the problem
solution which will be developed in the following chapters of this thesis.

3.7.1 Robust Estimation Problem Statement

Since complex adaptive control algorithms will ultimately be implemented on a digital
computer, we focus on the development of discrete-time estimation methods. We can use a
discrete-time estimator to identify the zero-order hold equivalent of a continuous-time plant. It was
shown in Sections 3.3-3.5, how the continuous-time assumptions AC1-3 of Section 3.2 could be
used to satisfy the discrete-time assumptions AD1-3 of Section 3.6. Thus, we will use these
discrete-time assumptions as a starting point for our problem statement.

We rewrite the true discrete-time plant of Eqn. (3.6.1), formed via the zero-order hold
equivalence of the continuous-time plant, as

Girue(@ = G(z,0) [1+5,,(z,0)], 8 © (3.7.1)
where again G(z, é) is the nominal model using an estimate 6 of the true parameter vector 6, in the
structure of assumption AD1.1, and Ssu(z, é) denotes the modeling error due to both structured
and unstructured uncertainty. That is, since a priori we only know that 6 € ©, where 6 is not

necessarily in ©%, there is structured uncertainty associated with this choice of 8 as well as the ever
present unstructured uncertainty.
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Problem Statement: The robust estimator must provide:

1) a parameter estimate 8 and, hence, a nominal model G(z, é),

2) a corresponding bounding function, Asun(ejmT, é), such that

joT § joT §
18, @, 0) < A, M9, 0), Vo (3.7.2)

That is, at a given sample time n we want to generate a new nominal model G(z, é), and a

corresponding bounding function Asun(e:j °°T, 8) in the frequency domain indicating how good the

current nominal model is. The robust estimator need only provide the above information at the
times that a control-law update is computed.

The goal of the robust estimator is to find a 6 in ©* and have Asun(ejmT, 6) approach
Au(ejmT). The viewpoint taken here is that the unstructured uncertainty Au(e'i (’)T) is the best we

can do given the structure of our nominal model. If the bound Au(ejmT) is chosen to be larger than

the actual unmodeled dynamics, then parameters can be found for the finite-dimensional nominal

model that yield a smaller uncertainty bound than Au(ejmT). Thus, the robust estimator can yield a
total unccrtairi& bound Asun(ejO)T’ é) that is even smaller than Au(ejmT). In the robust estimator,
we will not let Asu“(ejmT, é) become smaller than our a priori assumed bound Au(ejmT), when
computing control-law updates. We view the function Au(ejmT) as the desirable lower bound of

the function Asun(ejmT, 8).

The problem that we have described in this subsection will be referred to as the robust
estimation problem. An algorithm which satisfies this problem will be referred to as a robust
estimator since it provides a nominal model of the plant as well as a guaranteed frequency-domain
bounding function on the accuracy of this nominal model.
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1.2 Qutline of Problem Solution

In the following two chapters of this thesis, we will develop a solution to the robust
estimation problem stated in the previous subsection.’ First, in Chapter 4, we will describe a robust
time-domain parameter estimator for plants with unstructured uncertainty and an unmeasurable
disturbance. Then, in Chapter 5, we will describe a frequency-domain parameter estimation
method. Thus, we will present two methods of generating a parameter estimate and, hence, the
nominal model, one being a time-domain method and the other being a frequency-domain method.
Later, in the simulations, we will reveal some weaknesses of the specific algorithm employed in the
time-domain parameter estimation method of Chapter 4, so we will choose to use the
frequency-domain parameter estimator over the time-domain parameter estimator. In Chapter 5 we
will also develop a frequency-domain bounding methodology that will yield a set of points versus

frequency which upper bound the magnitude of the function Ssu(ejmT, 6) at those frequency

points. We will see that the frequency-domain methods of Chapter 5 will require extensive
real-time computations.
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CHAPTER 4.
ROBUST TIME-DOMAIN PARAMETER ESTIMATION

4.1 Introduction

In this chapter, we will develop a new type of deterministic, discrete-time parameter
estimator. First, we will motivate the use of a robust time-domain parameter estimator. Then, in
Sections 4.2-4, we will develop a mechanism to bound, in the time-domain, the effects of both
unmodeled dynamics and an unmeasurable disturbance. Lastly, in Section 4.5 this bounding
mechanism will be used together with a time-varying dead-zone to make a least- squares parameter
estimator robust.

Most current parameter estimation techniques provide unreliable estimates in the presence of
unmodeled dynamics and an unmeasurable disturbance. For example, assume that a large,
persistently exciting, sufficiently rich signal was present for a long time so that the algbrithm’s
parameter estimates were good. Then, assume that the input signal suddenly became zero but the
disturbance continued to excite the system. In this case, the parameter estimates would diverge
from their previously good values. As another example, consider what happens when the plant
input signal excites the high-frequency unmodeled dynamics, that is, the dynamics we constrain
with the unstructured uncertainty bound. In this case, the plant output signal is greatly affected by
the high-frequency unmodeled dynamics so that the parameter estimates yielded by standard
estimation techniques will have very little to do with the actual parameters of the low-frequency
nominal model. We need an algorithm which will adjust the parameter estimates when there is
good information about the parameters in the input/output data but we want the algorithm to stop
updating the estimates when there is no useful information available.

It is the goal of this chapter to develop an algorithm that can be used with confidence in the
presence of unmodeled dynamics and an unmeasurable disturbance. The resultant time-domain
parameter estimator is actually a combination of the bounding mechanism that we develop in
Sections 4.2-4 and a modified least-squares algorithm that was developed by Goodwin et al.
[17,18]. This modified least-squares algorithm is made robust through the use of a time-varying
dead-zone. The new contribution of this chapter is the development of the time-domain boundin g
mechanism of Sections 4.2-4. This mechanism uses the assumptions of the robust estimator, for
example the assumption of a frequency-domain bound on the unstructured uncertainty. Goodwin
et al. [17,18] use a different bounding mechanism in their development of a robust parameter
estimator. Their bounding mechanism requires different types of assumptions than those used in
development of the robust estimator.
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4.2 Development of the Linear Regression Form of the Plant

4.2.1 Development of DARMA Form

Before presenting the time-domain parameter estimation algorithm, we will give some
definitions that allow us to represent our previous discrete-time transfer function of the nominal
model in a deterministic autoregressive moving-average (DARMA) form. We again consider the
discrete-time system of Figure 3.6 where

y[n] = giryelnl * uln] + d[n]. (4.2.1)

and where '*' denotes convolution. We can use the forward shift operator q in the polynomials of
assumption AD1 of Section 3.6, to write

yIn] = [Ggye(@] uln] +din] (4.2.2)
=[(B(@/A@)[1+3,(@]]uln] +dln]. (4.2.3)

So,

y[n] = [B(@) / A(@)] u[n] + [B(Q) 5,(q) / A(q)] u[n] + d[n]. ) (4.2.4)
Multiplying both sides by the operator [A(q)] yields

{A@)] yIn] = [B(@] uln] + [B(q) 8,(q)] uln] + [A(q)] d[n]. (4.2.5)
Rewriting yields,

y[n] = [1-A(q)] y[n] + [B(@)] u[n] + [B(q) 8,(q)] uln] + [A(Q)] d[n]. (4.2.6)

We define the signal regression vector,

¢[n-11=[y[n-1] y[n-2] ... y[n-n;] u[n-n;+m,] u[n-n;+m;-1] ... u[n-n;] ]T. 4.2.7)
Now, Eqn. (4.2.5) can be rewritten as,

yln] = ¢[n-11T6, + egln], 4.2.8)

where
eolnl = [B(q) 3,(@)] u[n] + [A(Q)] d[n], 4.2.9)

and where 60 is the true parameter vector of the nominal model, as defined in AD1. Goodwin et al.
[17] observe that Eqn. (4.2.8) will, in general, be unsuitable for parameter estimation since the
error eg[n] involves "near differentiation” of the input and the disturbance. As suggested in [17],

we will prefilter both the input and the output signals, u[n] and y[n], to avoid this problem. We
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define the filter in the forward shift operator,
F(g) = (1) / W(q) (4.2.10)
where the polynomial W(q) has order n, or greater and has all its zeros in the open unit disk.
Now, we define the filtered versions of the input and output signals,
ug{n] = [F(@)] u[n], . (4.2.11)
yln] = [F(q)] y[n]. (4.2.12)
Multiplying both sides of Eqn. (4.2.5) by the operator [F(q)] yields

[A(®) F(@)] yin] = [B(q) F(@)] u[n] + [B(q) F() 8, (@] uln] + [A(q) F(@)]d[n]  (4.2:13)

or

[A@] ygn] = [B(@)] ugln] + [B(q) F(q) 8,(q)] u[n] + [A(q) F(g)] d[n]. (4.2.14)
Rearranging yields,

yein] = [1-A(@)] y¢ln] + [B(Q)] ugn] + [B(q) F(q) 8 ,(q)] uln] + [A(q) F(@)] d[n]. (4.2.15)
We define the signal regression vector containing the filtered signals,

¢fn-1]1 =[ ydn-1] ygdn-2] ... ygn-n;] udn-n;+m,] uf[n-n1+rhl-1] ... ugn-n] ]T.

4.2.16)
Now, we see that Eqn. (4.2.15) can be written as,
yelnl = 0dn-11T0, + e;[n], (4.2.17)
where
e,[n] = [B(q) F(@) 8,(q)] uln] + [A(q) F(q)] d[n]. (4.2.18)

In summary, we have developed a DARMA mode! for the discrete-time plant of Chapter 3.
Further, we have used filtering to avoid "near differentiation" of the signals, u[n] and d[n].

4.2.2 Decomposition of the Error Signal

In this subsection, we will introduce several definitions so that we can decompose the error

signal e;[n] defined in Eqn. (4.2.18). First, we define the transfer functions

H,,(z) =B(z) F(z) Su(z), (4.2.19)
Hy(2) = A(z) F(2). (4.2.20)




Chapter 4 . Page 71

As can be seen from Eqn. (4.2.18), H(2) is the transfer function from the plant input to the

equation error e;[n]. This transfer function describes the effect of the additive plant error, which is
due to the unmodeled dynamics, on the equation error. As can also be seen from Eqn. (4.2.18),
H4(2) is the transfer function from the disturbance to the equation error ¢,[n]. We can rewrite Eqn.
(4.2.18) as

€;[n] =hy[n] * u[n] + hg[n] * d[n]. (4.2.21)
where the impulse responses of H;;(z) and H(z) are denoted by hyj[n] and hy[n], respectively. We

decompose Eqn. (4.2.21) by defining

e,(n] =e,[n] +e3[n], (4.2.22)
where

€,[n] =h,[n] * u[n] (4.2.23)

es[n] =hgy[n] * d[n] (4.2.24)

The signal e,[n] is the part of the equation error e, [n] that is due only to the unmodeled dynamics.
- The signal e3[n] is the part of the equation error ¢, [n] that is due only to the disturbance. To bound
e,[n] at each time index n, we will find a time-varying magnitude bound on e,[n] and e;[n]
individually. That is,

le;[n]l < ley[n]l + leg[n]l. (4.2.25)

4.2.3 Qutline of the Time-domain Error Bounding Technique

In the following two sections we will develop magnitude bounding functions on the

component parts, €,[n] and e;[n], of the equation error ¢,[n] using the results of Theorem 2.4 of
Chapter 2. It will be advantageous to first find a bounding function on e3[n] since the results found

in this process will be useful in trying to find a bounding function on e,[n]. Given such a bound,
we will later be able to robustify the standard least-squares algorithm to the effects of unstructured
uncertainty and an unmeasurable disturbance.

Since the following two chapters are rather involved in their derivations of these bounds, it is
important to keep a perspective on what the important parts of the development are. As can be seen
from Theorem 2.4, we will be using essentially a frequency-domain methodology to find the

required time-domain bounding functions for e,[n] and e5[n]. However, we must also consider the

effect of the remainder terms due to the infinite-length of the impulse responses. To bound this
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effect, we must use a complicated, conservative scheme in the case of e,[n], since we chose to use

only the assumptions listed in Section 3.6. We are forced to take this approach since we want
guaranteed bounds. It is stressed that, although the development is lengthy, the bounding of the
remainder terms due to the infinite-length of the impulse responses, is only a relatively minor part
of our development. We want to provide rigorous bounds, however, the chief contribution to our
time-domain bounds will be due to the frequency-domain summations, not the generally smaller
remainder terms.

4.3 Time-domain Error Bounding of Disturbance Effects

4.3.1 Different Bounding Methodologies

In this section, we will find a magnitude bounding function on e;[n]. This signal is the
effect of the disturbance on the equation error. We note that Hq(2), which is the transfer function

from the disturbance to the equation error, must have all its poles in the open unit disk since F(z)
has all its poles in the open unit disk. This means that the frequency-domain methods that were

developed in Section 2.2 can be applied. The signal €,[n] can be bounded using one of three
methods, each of which we outline below:

Method 1: 'We compute a magnitude bounding function on the DTFT of d[n] using assumption

AC2.2 and Eqn. (2.1.12). Then, we find a magnitude bounding function on Hd(ej(’)T). These
two magnitude bounding functions are used, along with the equation for the inverse DTFT to

compute a magnitude bound on e;[n], in a way similarly to that used for the inverse DFT in
Theorem 2.4.

Method 2; We compute a magnitude bounding function on hd[n], which will be of the same form

as the bounding function of assumption AD1.6,

i=1

% g; n@) p;n, (4.3.1)

Then, the summation formulas in Appendix C can be used to compute the constant bounding
function,
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lea[nll < dpay { 2 Thglnll }, 4.3.2)
n=0

where d,,, is known from assumption AD2.1.

Method 3: We compute a magnitude bounding function on Hd(ej"’kT) for each k, and a magnitude
bounding function on hg[n] which again, will be of the form of Eqn. (4.3.1). Then we use

assumption AD2.1-2 and Theorem 2.4 to find a magnitude bounding function on e3[n].

Discussion:;

We choose to use method 3 from above since it uses assumptions AD2.1-2 rather than
AC2.2, as does method 1. Later, we will concentrate on the investigation of the properties of the
DFTs of different disturbance models. It would complicate matters if we were instead to work with
the Fourier transform of the disturbance and then have to perform the frequency-domain folding of
Eqn. (2.1.12). In addition, later in the frequency-domain bounding methodology of Chapter 5, we
will also be using a magnitude bounding function on the DFT of the disturbance, that is, the
function of assumption AD2.2. Thus, we choose to work entirely with the DFT of d[n].

However, we do note that method 1 does not require knowledge of a magnitude bound on d[n], as

do both methods 2 and 3. This is because our ultimate goal here is to bound the error signal e;[n],

not the disturbance itself.

Method 2 is not used since it will, in general, be more conservative than method 3. This
statement of relative conservativeness actually depends on how good the different bounds of AD2.1
and AD2.2 are relative to one another. For example, if a tight bound on the magnitude of the DFT
of the disturbance is known and only a coarse bound on |d[n]! is known, then method 3 will yield a

tighter bounding function on le;[n]! than method 2. However, if only a coarse bound on the
magnitude of the DFT of the disturbance is known and a tight bound on |d[n]l is known, then
method 2 could yield a tighter bound on le;[n]I.

As a final note, we point out that method 3 actually contains elements of both methods 1 and
2. That is, method 1 is essentially a purely frequency-domain methodology, and method 2 is a

purely time-domain methodology, while method 3 uses both frequency-domain and time-domain
bounding methodologies, as is evident from Theorem 2.4.
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4.3.2 Development of a Bounding Function using Method

First, we find a magnitude bounding function on Hd(ei“)kT), for k=0, . ., (IN/2), where we

assume that N is even. Recall that @y is defined in Eqn. (2.1.4). At this point in our development,

we must include the fact that the transfer function Hy(z) is actually a function of the parameter

vector 6, which is only coarsely known . That is, using Eqn. (4.2.20), and assumptions AD1.1-2,

Hy(z,0) = A(z0) F(z) , where 6 € ©. (4.3.3)
Thus, we find that,

Hy@%T,0) < Hy@%T), fork=0,..,NR), (43.4)
where

Hye9T) = S { 1Ak T 0) } IFEI9kT), fork =0, .., (N/2). (4.3.5)

The above bounding function is computed off-line as part of the deéign procedure.

To find a magnitude bounding function on the impulse response of hg4[n] we must include its
0 dependence. The structure of H(z,8) is known, as is apparent from Eqn. (4.3.3), so we can

find an expression for h4[n,0] in terms of the parameter vector 8. Thus, assumptions AD1.1-2

have allowed us to define the following bounding function,

lhgn,6]! < hyln], Vn, : (4.3.6)
where
hgln] = sup { lhy[n,6]l}, forn=0,1,.. 4.3.7)
0e®

Since the transfer function F(z) has all its poles in the open unit disk, the bound of Eqn. (4.3.7)
will be of the form,

_l;d[n] = % g n(ri) pin’ 4.3.8)

i=1

where 0 < p; < 1, Vi, and the largest p; corresponds to the slowest pole of F(z). For simplicity, we

assume here that

hy[n] =g, p/8, forn=0,1,.. (4.3.9)
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Given Eqgns. (4.3.4-5), the bounding function id[n], plus dp,,, and BN"'n(ejka) from
AD2.1, we can use Theorem 2.4 to find,
leg[n]l < esln], (4.3.10)

where
L /7S
ol = 1 { Hy@®D) Dy ag +2 2 Hy@ekD) D+
N k=1

+ Hy@2m2)T) DM+ 2 dmax ZN hglpl, (4.3.11)
p:
forn=0,..,N-2,
and where using Eqn. (4.3.9) and Eqn. (C.4) of Appendix C, we find
ZN halp) = g1 PN/ (1 -py). 4.3.12)
p= A

For n > N-1, €3[n] equals ;3, a constant. Thus, with reference to assumption AD2.2,

N)-1 -
% = 1 (Bg@0T) Dy +2 kZ_ll Hy(ekT) D)

+ Hy@®mN/2)h) Do)+ 2 dmax ZN hglpl- (4.3.13)
p=
In summary, we have computed a time-varying bound on the magnitude of e3[n], which is
the component of the equation error that is due to the disturbance. For n > N-1, the bounding
function becomes a constant. A method for bounding the remainder term due to the fact that h[n]
has an infinite-length rather than finite-length impulse response has been developed. This method
has been illustrated through the use of a simple first-order bounding function. The bounding

function of Eqn. (4.3.11) and the bound of Eqn. (4.3.13) are computed off-line as part of the
design procedure.
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4.4 Time-domain Error Bounding of the Effects of Unstructured Uncertainty

In this section, we will find a magnitude bounding function on e,[n]. This signal represents

the effect of the unstructured uncertainty on the equation error. We note that H,,(z) must have all its

poles in the open unit disk since we know that both F(z) and B(z)8(z), via assumption AD1.5, have
all their poles in the open unit disk. Thus, we can apply the frequency-domain methods developed
in Section 2.2. While it is possible to use any of the three methods listed in Subsection 4.3.1, we
will be using method 3, since we will be able to find a good frequency-domain bounding function

on |Hu(ej°’kT)l, but will only be able to find a very conservative bounding function on lhy,[n]l. A
magnitude bounding function on the DFT of the input signal will be computed on-line and used in

combination with a precomputed bounding function on IHu(ejka)l to compute, on-line, a

time-varying bound on le,[n]l.
4.4.1 Computation of a Magnitude Bounding Function on H,,(e/®kT)

First, we find a magnitude bounding function on Hu(ej"’kT), for k=0, . ., (N/2), where we
assume that N is even. Again, recall that O is defined in Eqn. (2.1.4). Now, we must include the

fact that the transfer function H,,(2) is actually a function of the parameter vector 8, which is only

coarsely known . That is, using Eqn. (4.2.19), and assumptions AD1.1-2,

H,,(z,8) = B(z,0) F(z) Bu(z), where 0 € ©. (4.4.1)
Using AD1.1-3, we find
Hy@%%T,0) < Hy@T), fork=0,.., N/2), (4.4.2)
where
H el%T) = sup { BEi®T,0)l } IFEiOkTy A, (€9%T), (4.4.3)
0e® '

fork=0,.., (N/2).
The above bounding function is computed off-line as part of the design procedure.



Chapter 4 Page 77

4.4.2 Computation of a Magnitude Bounding Function on h,[n]

The magnitude bounding function on h[n] is difficult to compute. Recall that hy[n] is the

impulse response of the transfer function from the plant input to the equation error. The required
bounding function will be found using assumptions AD1.1-2 and AD1.7; however, the resulting
bounding function will be conservative. Consider the model for the true plant which was
introduced in AD1,

Girye(@ = G(z.9) [1 + 8, (2)]. (4.4.4)

Then the impulse response of G, () can be written as,
Zirueln] = g[n.0] + g[n,6] * 3 [n] (4.4.5)

where the impulse responses of G(z,0) and 8u(z) are denoted by g[n,08] and 'gu[n], respectively.
Now, we find that '

lg[n,0] * gu[n]l = lgirueln] - &[n,0]L. _ (4.4.6)

In order to simplify our notation, we define the impulse response

hgs[n,6] = gln,8] * & [n]. L (44.7)
From assumption AD1.7 and Eqns. (4.4.6-7), we know a bounding function Ega[n] such that .
Ihgs[n,6]l < hgslnl, Vn, 4.4.8)

where Fgg[n] is of the form of assumption AD1.6, that is,

I
hygln] = ﬁl g; nm) p;1. (4.4.9)
1=

Note that the largest p; of Eqn. (4.4.9) corresponds to the slowest pole of Gyp,e(z). At this point,

we will assume for simplicity that Ihgs[n,e]l can be bounded by a simple first-order system, that is,

we assume that

h—gﬁ[n] =g, poll, forn= 0,1,.. (4.4.10)

Thus, we have not explicitly bounded Igu[n]l, but have instead bounded Ig[n,0] * gu[n]l. We will
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be able to use this bounding function on Ihga[n,e]l to find a bounding function on le,[n]I.

First, we observe that the transfer function corresponding to the impulse response hgs[n,e]

is given by

G(z,9) 6,(2) = B(z,0) 5,(2) / A(z.9). (44.11)
We find from Eqns. (4.2.19-20) and (4.4.11) that,

H,(z,0) = Hj(z.8) G(z.0) Su(z), where 0 € ©. (4.4.12)

The magnitude of the impulse response of H4(z,0) has already been bounded by the function of
Eqn. (4.3.7). From Eqn. (4.4.12) we find that

by[n,6] = hyln,6] * hygln,6). (4.4.13)
or
oo n
hy(n.6]= 2. hglm] hogln-me]= X hyim.6) hygln-m,6] (4.4.14)
m=-oo m=0

since h[n,0] and hga[n,B] are causal impulse responses. Now, we find that

n

thy[0,0] < Z lh4(m,6]I Ihgg[n-m,e]l. (44.15)
. m=0

So, using Eqns. (4.3.6) and (4.4.8) yields

Ih,[n,8]l < hy[n], Vn, (4.4.16)
where
n
hylnl = 2, hglm] hyg[n-m]. (4.4.17)
m=0
We now can use the assumed forms of Eqns. (4.3.9) and (4.4.10) in Eqn. (4.4.17) to find
n
hyln] = 2, g1 P gy p ™ (4.4.18)
m=0

Manipulation yields
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n
E-u[ﬂ] ={g18& Z (P1/p)™ ) P (4.4.19)
m=0

We consider two possibilities in Eqn. (4.4.19). The following results are from Appendix D.
Case 1. (p; #p, ) In this case,

hyln] = g; g, [(pAF] -0+ /(py - 1. (4.4.20)

Case2. (p;=py)In this case,
hyln] = { g; g (n+1) } py™. (4.4.21)

More complex forms of the bounding functions .h_d[n] and ng[n] are also considered in Appendix
D.

Given Eqn. (4.4.2), the bounding function -lTu[n], Umax from assumption AD3.1, and the
on-line computed values of IUN“(ej"’kT)I we can use Theorem 2.4 to find,

le,[n]l < e,[nl, ' (4.4.22)
where
| N/2)-1
oln] = 1 { Hy@®T) upPogl+2 2 Hy@ %) (o)
N _ k=1 (4.4.23)

+ Hy@ON/2)T) U @qq2)! ) +2 Uax 2 Bylp), forn=0,1,..
p=N
Further, for the two illustrative cases of Eqns. (4.4.20-21), we find bounds on the infinite sum.

Case 1. (p, # P, ) In this case, using Eqn. (C.4) from Appendix C we find that

2 hylpl = [8; 8/ @p- P [P,N1/(1-py -0 N*1/(1-pp)] (4.4.24)
p:N .

Case 2. (p; =P, ) In this case, using Eqn. (C.4) and (C.10) we find

> o) = g, 5pN(N(-pp+1)/(1-pp? . 4.4.25)
p=N
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In summary, we have computed a time-varying bound on the magnitude of e,[n], which is
the component of the equation error that is due to the unstructured uncertainty. A method for
bounding the remainder term due to the fact that hy,[n] has an infinite-length rather than finite-length

impulse response has been developed. This method has been illustrated using simple first-order
bounding functions. More complex forms of the various bounding functions are considered in
Appendix D. The bounding function of Eqn. (4.4.23) is based on a priori calculations and the
on-line computation of the DFT of the input signal.

4.5 Robustified Least-squares Parameter Estimation with Regularization

In this section, we will present a robust form of the standard least-squares parameter
estimator. This algorithm was developed by Goodwin et al. [17,18]. However, Goodwin et al.
use a different mechanism to find a time-varying bound on the equation error in reference [17] than
that used in this thesis. We utilize the assumed frequency-domain bounding function on the
unstructured uncertainty, as was discussed in Section 4.4, whereas, Goodwin et al. use a
time-domain method to compute their time-varying bound.

4.5.1 Completion of Equation Error Boundin

In this subsection, we will combine the results of Sections 4.2-4 and complete our
development of the bounding of the equation error signal e;[n], which is the error due to the effects

of unstructured uncertainty and the disturbance as is defined by Eqn. (4.2.18). Using Eqns.
(4.2.25), (4.3.10) and (4.4.22) we find that

ley[n]l < e[n], Vn. 4.5.1)

where
€,[n] = eyln] + e;[n], (4.5.2)

and ?2[n] and —e_3[n] are given by Eqns. (4.4.23) and (4.3.11), respectively.

4.5.2 Goodwin et al.'s Robustified Least-squares Algorithm

In this subsection, we will present a modified least-squares algorithm that was developed by
Goodwin et al. [17,18]. This algorithm includes a time-varying dead-zone in a least squares
parameter estimator. This time-varying dead-zone is a robustifying mechanism that seeks to sort
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out good and bad information using a type of thresholding in the time-domain. Recently, this
method has appeared in the literature in efforts to achieve robustness in adaptive controllers. As

was discussed earlier, we will be using a different mechanism to bound le,[n]! than that used by

Goodwin et al. in [17]. Before we present the algorithm, we must first make several definitions.
With reference to Section 4.2, we define the prediction error

eln] = ygn] - ¢n-11T B[n-1] (4.5.3)
where ¢f[n-l] and yg[n] are given by Eqns. (4.2.16) and (4.2.17), respectively, and 8 denotes the

estimate of the parameter vector 6. Further, we define the parameter error vector as follows

8[n] = 6[n] - 6. (4.5.4)
Using Eqn. (4.2.17) in (4.5.3) yields

e[n] = - ¢dn-11T 8[n-1] + ey[n). ‘ (4.5.5)

Thus, the prediction error e[n] depends on both the parameter error vector and the error signal ¢4[n]
due to the unstructured uncertainty and the disturbance. Since we have a time-varying magnitude
bound on ¢;[n] given by Eqn. (4.5.2), we can make the least-squares algorithm robust. In

preparation for the definition of the parameter estimation algorithm, we define the dead-zone
function,

f(ge) = e-g ife>g
0, if lel<g (4.5.6)

e+g, ife<-g.

We now present the robustified least-squares algorithm. From [18],

6(n] = 6[n-1] + u[n] P[n-2] ¢gfn-11 __ efn]
1 + 0dn-1]T P[n-2] ¢¢n-1] ' (4.5.7)

P[n-1] = P[n-2] - v[n] P[n-2] ¢¢n-11 ¢n-1]T Pn-2]
1+ 6dn-11T P[n-2] ¢{n-1] (4.5.8)

with é[O] and P[-1] given where P[-1] = P[-l]T > (0, and where
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v[n] = a s[n] (4.5.9)
with

s(n] = 0, | if le[n]l < B e,[n]
~ (4.5.10)
f{ B e;[n], e[n] } / e[n], otherwise,

where we choose o € (0,1) and B is defined by
B= V1/(1-a). (4.5.11)

Figure 4.1 illustrates the relationship between e[n] and s[n].

/N s[n]
S 1 S
0 N
l l 7
-g'eylnl| geyln] eln]

Figure 4.1: Dead-zone Illustration.

Remark 1: From Eqns. (4.5.10-11) and the definition of v[n], we see that there is a trade-off
between the adaptation gain o, and the size of the dead-zone as controlled by the parameter B. If we
choose the gain o large, that is, near unity, then § will be much greater than unity so the dead-zone

will be very large and the algorithm will be turned-off most of the time.

We will now present a theorem that lists the properties of the robustified least-squares
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algorithm that has been described in this section. In the following theorem, we show that the
robustified least-squares algorithm has properties that are similar to the standard least-squares
algorithm. The first and third properties listed in the following theorem are the same as the
properties of the standard "least-squares" algorithm that are proven in [13]. The second property
listed below is similar to an analogous result for the standard "least-squares" algorithm except that
in the result for the standard least-squares algorithm the error signal e[n)? appears instead of

(B ;1 [n], e[n] }2. The proof of Theorem 4.1 has been outlined in the literature [17,18].

Theorem 4.1: If Eqn. (4.5.1) holds, then the preceding algorithm has the following properties:

1) || 81|l < Vx{P{-11} |8[01]l, n>1 (4.5.12)

where k{P[-1]} denotes the condition number of P[-1].

2) lim £( B ¢,[nl. e[n] }? = 0.
1> 1 4 ¢¢ln-11T P[n-2] ¢¢n-1] 4.5.13)
3)lim || 6[n] - 6(n-11|| =0. (4.5.14)
n—oe

Proof: See Appendix E.
Remark 2: It can also be shown, see Appendix E, that

I181]| < V«(Pn-21} |6Mn-11], n>1. (4.5.15)

Thus, if the condition number of P is unity we see that the norm of the parameter error vector is
non-increasing. Later, in the simulations, we will see that the algorithm generally performs better
than the guaranteed properties of Eqns. (4.5.12) and (4.5.15).

Remark 3: If the signal vector ¢¢[n-1] and the matrix P[n-2] are bounded, that is, both || Ogln-1] I

and ||P[n-2]| are finite, then property 2 of Theorem 4.1 implies that the error signal e[n] will
eventually be in the dead-zone. A further property of the above algorithm, which is proven in
Appendix E, is that

IPn-11]] < |PL-1])| <0, n> 1. (4.5.16)
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Thus, for bounded signals we conclude that the error signal eventually ends up in the dead-zone.
4.5.3 The Regulariz nstant Trace Modification to th -squares Algorithm

As is discussed in Goodwin et al. [17;18], the update given by Eqn. (4.5.8) causes P to be

non-increasing and, in practice, the algorithm essentially turns itself off as n—oe. The problem is
the same as that encountered in the standard least-squares algorithm as is discussed in Goodwin
and Sin [13]. In practice, assuming that the input is rich, the basic robustified least-squares
algorithm has a very fast initial convergence rate, but the algorithm gain reduces dramatically when
the P matrix becomes small. To prevent this from happening, the robustified least-squares
algorithm can be modified. This will help maintain an overall fast convergence rate. We choose to
use the "regularized constant trace" modification that was introduced in [1]. This modification
yields a P matrix that has a constant trace. Thus, it keeps P from becoming small. The robustified,
regularized least-squares algorithm is described by using the same equations as in Subsection
4.5.2, except that instead of using Eqn. (4.5.8) to compute P, we use the following algorithm.

Regularized Constant Trace Algorithm;

Let ¢y and ¢, denote two positive constants, ¢; > ¢y Further, let m denote the number of

parameters and define
t = trace{ P[n-1]}. (4.5.17)
The algorithm is as follows,

a) Set P[-1]1=(c;/m) L ‘ (4.5.18)

b) Compute

P(n-1] = P[n-2] - u[nl Pln-2] ¢¢ln-11 ¢fn-11T P[n-2] .
1+ ¢¢n-11T P[n-2] ¢¢n-1] (4.5.19)
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c)Let

P[n-1] = { P[n-1]1+((c;-1)/m) L, if T3¢
— : (4.5.20)
(cg/T) P[n-1] + ((cy -cp) /m) 1, if T<cy,.

We will now present a theorem that lists the properties of the robustified least-squares
algorithm with the "regularized constant trace" modification. Ideally, we would like to be able to
prove the same properties as those listed in Theorem 4.1. In fact, we are able to prove the second
and third properties of Theorem 4.1 for our modified algorithm; however, we are forced to relax
the first property of Theorem 4.1 as we see below. Most of the proof of Theorem 4.2 has appeared
in the literature [1].

Theorem 4.2; If Eqn. (4.5.1) holds, then the modified algorithm defined by the use of Eqns.
(4.5.17-20) has the following properties:

1) |8l € VOmax (P11} / Oin (Pl-11} 801 < v [8[01], n21  (45.21)

where Gmax{-} and Gmin{o} dpnotc the maximum and minimum singular values of a matrix,

respectively.
2)lim __f{Benlen}®2  =0.
N 1 + ¢dn-11T P[n-2] ¢¢n-1] (4.5.22)
3)lim || 8[n]- 8[n-1]]| =0. (4.5.23)
n—oo

Proof: See Appendix E.

Remark 4: It can also be shown, see Appendix E, that

18001l < Vo max(PIn-11} / Oy (Pn-21) || B[n-11]}, n> 1. (4.5.24)

Since the trace of P is kept constant by the modified algorithm, we find that if the condition number
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of P is unity for times n-1 and n-2, then Eqn. (4.5.24) would imply that the norm of the parameter
error vector would be non-increasing.

Remark 5: A further property of the above modified algorithm is that
|Pln-1]]| < trace{P[n-11} =¢;, n> 1. ’ (4.5.25)

Thus, for bounded signals we can conclude, as in remark 3, that the error signal eventually ends up
in the dead-zone.

In this section, we have described what we call the "robustified least-squares" algorithm.
This algorithm, due to Goodwin et al. [17,18], uses a time-varying dead-zone to achieve
robustness. A theorem listing the properties of this algorithm was presented. In addition, we
introduced a modification to prevent this parameter estimation algorithm from "turnin g-off’. Ina
second theorem, we showed that the modified version of the robustified least-squares algorithm has
properties that are similar to the basic robustified least-squares algorithm.

4.6 Summary

In this chapter, we have developed a modified least-squares parameter estimator that is robust
to the effects of unstructured uncertainty and an unmeasurable disturbance. This robustified,
regularized algorithm uses only assumptions AD1-3 of Section 3.6. A flowchart illustrating the
development of this chapter is presented in Figure 4.2. First, we developed a bound on the part of

the equation error e;[n] that was due to the disturbance. The computation of this bound is an

off-line operation. We then set up a mechanism for computing a time-varying bound on the part of
the equation error that was due to the unstructured uncertainty. This time-varying bound is
computed on-line using the current DFT of the input signal. These component bounds are added to

form a bound on the equation error €;[n]. This equation error bound is used by the robustified,

regularized algorithm of Section 4.5 to control the time-varying dead-zone. Thus, we have
presented a complete methodology for robust time-domain parameter estimation.

Combining the parameter estimate of the algorithm of this chapter with the nominal model
structure of assumption AD1 yields a nominal model that can be used for the computation of
control-law updates. Later, in the simulations, we will show that the dead-zone based parameter
estimator of this chapter has some weaknesses. Specifically, the dead-zone mechanism tends to
disable the parameter estimator much of the time, so the resulting parameter estimates are poor. In
the following chapter, a second method for generating parameter estimates for the nominal model
will be described. This alternate method is frequency-domain based and does not suffer from the
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problems of the dead-zone based parameter estimator.
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Figure 4.2: Development of the Robust Time-domain Parameter Estimator.
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CHAPTER 5.
FREQUENCY-DOMAIN PARAMETER ESTIMATION AND UNCERTAINTY
BOUNDING

5.1 Introduction

In this chapter, we will present a frequency-domain bounding methodology that yields a
frequency-domain estimate of the true plant as well as a bounding function on the modeling error in
the frequency domain. Using this frequency-domain estimate, we will compute a parameter vector
estimate using a type of weighted least-squares fit in the frequency-domain. Given the parameter
vector estimate and, hence, a nominal model, we will compute a boundin g function on the
modeling error with respect to this nominal model. The methodology will yield a set of points

versus frequency which bound the magnitude of the function SSu(ej mT, 6) at those frequency

points. A smoothness condition is then used to compute a continuous bounding function on the

magnitude of SSu(ejmT, 6). To compute this continuous bounding function, we must bound the

variations of SSu(ejmT, é) between the discrete frequency samples. The chapter is organized as

follows.

First, in Section 5.2 we develop the basic frequency-domain bounding algorithm. Then, in
Section 5.3 we address the problem of combining frequency-domain information that has been
learned during different time intervals. Freqﬁency—domain parameter estimation is discussed in
Section 5.4 . In Section 5.5, the computation of the error bounding function with respect to the
nominal model is discussed. In Section 5.6, two different philosophies concerning the modeling of
the unstructured uncertainty are presented. A methodology for smoothing our uncertainty
bounding function is presented in Section 5.7. In Section 5.8 we show how to bound inter-sample

variations of lﬁsu(ej(’)T, o). Finally, in Section 5.9 we summarize our results. The key

_contribution of this chapter is the development of the frequency-domain bounding methodology.

This new methodology is the most important part of the robust estimator in that it provides the
bounds on the frequency-domain estimation errors.

5.2 Frequency-domain Estimation and Error Bounding

In this section, we will develop a methodology for finding a frequency-domain estimate of
the true plant and a corresponding error bounding function on the frequency-domain modeling
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€ITOr.

5.2.1 Development of the Basic Methodology

Consider the true discrete-time plant gi,,.[n], whose input is u[n] and whose

disturbance-corrupted output is y[n]. Assuming zero initial conditions, we know that

y[n] = gryelnl*uln] + d[n]. (5.2.1)
Then, using the notation of Section 2.1 and Theorem 2.1, we find that for some time index n,
YN(@) = Gerye @ PkT) Upey) + ENP@y) + DN(@)) (52.2)

fork=0,..,N-1,
where from Theorem 2.2 we know that for some integer M,

Ex™(@)! < ENM@y), fork=0,..,N-1 (5.2.3)
with
M-1
EnN ) = 2 lgeuelp)l UNTP(@) - UNYM@)! + Epepy, fork=0,..,N-1,  (52.4)
p=1

where the remainder term is defined as

o0

Eremn =2 Umax & P 'EeruelPlh (5.2.5)
p=M

and where we know u,, from assumption AD3.1. The integer M will be referred to as the

memory length. The choice of this important design parameter will be discussed later, in Section
6.6. Now, rewriting our assumptions for convenience, we know from AD1.6 that

8erueln]l < Eeruelnl, (5.2.6)
where
Strueln] = § g; nfi i (5.2.7)
i=1
and where r; is a positive integer, and g; > 0, 0 <p; < 1, and r; are known fori=1,.., I, Since

Etrue[n] is of the form of Eqn. (5.2.7), we can use the results of Appendix C to evaluate the

infinite summation term. For simplicity, we assume that
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Zirueln] = g, po1, forn=0, 1,.. (5.2.8)
In this case, we use Eqn. (C.10) to compute the bounding function,
M-1
EN@) = 2 g2p5 IUNM (@) - Unap) +
i=1 (5.2.9)
200y 8, P2 (M-Mpy+p,)/(1-py)2, fork=0,..,N-1.

The bounding function of Eqn. (5.2.9) can be computed on-line by using the current N-point DFT
of u[n] along with M-1 old N-point DFTs of u[n]. We note that the second line of the previous
equation can be made arbitrarily small by choosing M to be sufficiently large. However, as M is
increased so does the amount of the on-line calculations. This tradeoff will be discussed further in
Chapter 6.

Now, we define the frequency-domain estimate Gf,N“(mk) and the corresponding

frequency-domain error Eg,\"(coy ).

GeN™@y) = YN (@) / U@, (5.2.10)

EpNT(@) = GrN™@)) - Gyrye@kT), fork =0, .., N-1 (5.2.11)
From Eqn. (5.2.2), ‘

EpN"(@y) = (EN™@y) + DN™(@) ) / Un(@y) | (5.2.12)
and using the triangle inequality we find,

EsNM @)l < Epn™oy) (5.2.13)
where

EgeN™@y) = (EN™ey) + D@y )/ UN" (@)L, (5.2.14)

and where E\{(@, ) is given by Eqn. (5.2.4) and

IDN™(@)! < DM@y, fork=0,..,N-1. (5.2.15)

We will refer to Gf,Nn(OJk) as our frequency-domain estimate of the true plant at time index

n. Note that Gf,Nn((ok) is the set of N complex numbers computed using the N-point DFTs of
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u[n] and y[n], which are computed on-line. Further, we will refer to Ef,N“(cok) as the
frequency-domain error bounding function at time index n. In Eqn. (5.2.14), the bounding

function EN“(mk) and IUNn(cok)I are computed on-line at each time index n, while the function

BNn(mk) is known from assumption AD2.2. If we assume that n > N-1, that is, we assume that at

least N non-zero points of data have been collected so that, with reference to AD2.2,

DN, ) = Dy(oy) whenn > N-1, fork=0,..,N-1, (5.2.16)
then Eqn. (5.2.13) becomes
EeN™@)) = (EN™®,) + D(@y) ) / TUN (@), when n > N-1, (5.2.17)
fork=0,..,N-1.

We note that Eqn. (5.2.17) gives us an idea of how large the input signal must be to achieve some

error bounding function Ef,Nn(cok) given the disturbance DFT bounding function fN((ok). This

equation will be useful later, in Chapter 7, where we consider what kind of probing signal should
be introduced into the closed-loop adaptive system to enhance identification.

5.3 The Cumulative Frequency-domain Estimate and Error Bounding Function

In this section, we will discuss a straightforward technique for combining the
frequency-domain estimates and corresponding error bounding functions from different time
intervals. That is, we show how to combine all of the past frequency-domain information into a
cumulative estimate and cumulative error bounding function. The basic idea is that, at a given

frequency point ®,, we use the value of Gf,Nn(a)k) that has the smallest corresponding error
bounding function Ef’N“(cok), at that frequency. To formalize this we define the cumulative error

bounding function at ®,

EgumfN™ @) = min { EgnP(ay) ). (5.3.1)

p<n

and the cumulative frequency-domain estimate at s
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GeumfN™ (@) = { GeN(@) | EpNT(@)) = Ecumen™@y) ). (53.2)
The subscript "cumf” in Eqns. (5.3.1-2) denotes the fact that they are the "cumulative
frequency-domain" estimate and error bounding function. We define, for time index n,

Ecumf’Nn(mk) = C‘cumf’Nn(“’k) - Gu.ue(eika), fork=0,..,N-1. (5.3.3)
Then Eqn. (5.3.2) ensures that at time index n,

EcumtN™ @) < EcymeN@y), fork =0, .., N-1. (5.3.4)

In practice, the following simple recursive algorithm will be used to compute chmf’Nn(“)k) and

Ecumf’Nn(C‘)k) at a given frequency @,.

Algorithm:
If Ef,Nn(mk) < Ecumf’N'n-l(‘”k)’ then set
Ecuxnfqvn(c')k) = Ef,Nn(mk)a and

Geumft:N™ (@) = GN"(y). | (5.3.5)

else, set
Ecumf’Nn (o) = ECumf,Nn'l(wk), and

chmf’Nn(mk) = chmf,Nn- 1 (O)k).

For initial conditions, we use the a priori plant assumptions AD1. If the initial guess for the plant
corresponds to the parameter vector 91, then for n=0 we set the cumulative frequency-domain

estimate to the nominal model using 6, and set the cumulative error bounding function to the best

bounding function we can find using only a priori information. So, using our earlier notation, we
write
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Initi nditions: (n=
GeumeN (@) = GEkT,0)) (53.6)

EoymfN™(@p) = s {1G6EI9%T,0)) - Gk T 0)l + IGEIPKT,0)1 A,k T) }  (53.7)
€

fork=0,..,N-1.

The above supremum are computed off-line. An important property of the above algorithm is that it
only updates the cumulative frequency-domain estimate and the corresponding cumulative error
bounding function when useful information is learned, at a given frequency.

As a final note, we observe that, since we are working with real-valued time-domain signals,
the properties of the DFT's of real-valued signals can be used to show that

GeumtN"(@) = G* cumfN"(@ON-1)- (5.3.8)

EcumfN™(@p) = EcumtNM@N)» fork=1,.., (N/2)-1, (5.3.9)
where "* denotes complex conjugate and where we have assumed that N is even. This means that
the information for frequency points k=0, . . , N-1 is contained in the information for the frequency
points k=0, . ., N/2. We only need to estimate the plant for frequency points k=0, . . , N/2.

5.4 Frequency-domain Parameter Estimation

In this section, we will show how the cumulative frequency-domain estimate of the previous
section can be used to find parameter estimates for the nominal model. We use the structure of the
nominal model and a type of weighted least-squares fit to the frequency-domain estimate

GeymfN(@)- There are many ways that one could choose the nominal model parameters to fit

the cumulative frequency-domain estimate. The method that we present in this section is
computationally efficient, since it only requires the solution of linear equations.
The procedure is best illustrated by an example. Consider the nominal model,

G(z8,) = (bgz + by) / (22 - a1z - a,), where (5.4.1)

0,=[2a, a, by by IT. (5.4.2)

Using this nominal model structure we can write
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(22 - 2,z - 3) G(z.8) = byz + by, (5.4.3)
or
22 G(z,0)) =[2G(z8) G(z8y z 11[a, a, by by 1T (5.4.4)
=[z G(Z,OO) G(z,OO) z 1] 90. (5.4.5)
Since the parameters are assumed to be real-valued, we find
Re{z2 G(z,GO)} =[ Re{z G(z,eo)} Re{G(z,OO)} Re{z} 1] 90, (5.4.6)
Im{z2 G(z.8) =[Im{zG(z8y)} Im(G(z8y} Im(z} 018, (5.4.7)

Thus, if we know the complex value of G(z,eo) for some known z, we can find two linear

equations in the parameters. Our frequency-domain estimation method yields an estimate of the

plant at frequencies oy fork=0,..,N/2. So, letting z = ejka fork=0,..,N/2, we can

define a (N+2)x4 matrix A whose elements depend upon the complex values of some discrete

function of frequency. We write A( G(ejka,Bo) ) to denote the fact that the matrix A depends

upon the values of the specific frequency function G(ejka,BO). We now define the form of the

matrix. A and show how its elements depend on the values of the discrete frequency function that is
used as its argument.

A(GEeI%%T,0,)) =
Re{el%0TGEi®0T, 0]  Re(GEI®0T,0)}  Refel®0T} 1]
I

Re{ejm(le)TG(.ejm(N/Z)T,eo)} Re{GEON/2)T,0)) RefeloN/2)T)

Im{el®0TGEi®T,0))  Im(GEi®T,0p)) Im{ei®T} o
Lm0 TGEONT8) Im(GEONDT.89) In(e9N2T) 0
(5.4.8)

Similarly, we define the form of the (N+2) vector B and show how its elements depend on the
values of the discrete frequency function that is used as its argument.
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B(G(el®%T1,0,) ) =
Re{e2?0TG(ei®0T,0,))
Re(eZON2)TGEON2)T,0y)
Im{e2i20TG(ei®0T,8,))

Im{eZoN)TaEeN2T o) (5.49)
Using Eqns. (5.4.2) and (5.4.6-9) we can write,
A(G(eI”kT,8) ) 8,=B(GE kT8, ). (5.4.10)

This matrix equation is just a statement of Eqn. (5.4.3) at the frequency points z = eJ%T for
k=0,..,N/2.

In summary, we have shown how knowledge of the complex values of G(ejka,eo) at the
(N/2)+1 frequencies @, . ., ®N/2) can be used to write N+2 linear equations in the parameters.
In the ideal situation, where one could exactly find frequency values that correspond to a system

with the nominal structure G(ej(')kT,GO) for k=0, . ., (N/2), the matrix equation (5.4.10) will have a

solution. That is, since we assume that N is greater than the number of parameters, Eqn. (5.4.10)
will have more linear equations than the number of parameters. In this case, for Eqn. (5.4.10) to
have a solution, the frequency values that are used in the A and B matrices must correspond to a
system with the assumed structure of the nominal model. However, in practice we will only have

our cumulative frequency-domain estimate chmf’Nn(‘”k) with which to estimate the parameters. Ii

we use chmf’Nn(“’k) instead of G(ej(’)kT,GO) in Eqns. (5.4.8-9), then the equation

A(GeumtN™@)) 8 = B(GeymaN™(@y)) (5.4.11)

will not, in general, have a solution. In Eqn. (5.4.11) we denote the matrices A and B whose

elements depend on the discrete function of frequency Géumf’Nn(‘”k) by A( chmf’Nn(“‘k) ) and

B( Goymf:N" (@) ), respectively. The elements of A( GeumfN" (@) ) and B( chmf’Nn(wk)
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depend on the complex values of GeumfN"(@y) in the same way that A( G(ejka,Go) ) and
B(G(@“kT,0;) ) depend on G(e/®kT,8,) in Eqns. (5.4.8-9). We note that Eqn. (5.4.11) is in the
form of the standard least-squares problem that is discussed in Strang [33].

We will choose the parameter estimate 6 as the vector that minimizes the frequency weighted
norm of the error vector,

A(GeymeN™@) ) 8 - B( Geymen™@y) ). (5.4.12)
We define, with reference to Eqns. (5.4.8-9), the diagonal frequency weighting matrix,

where f() is the frequency weighting function. The parameter estimate that minimizes the norm of
the error vector

W (A(GeymeN™ @) 8 - B(GeymeN™@) ) (5.4.14)
is given by the well-known result,
6 = (ATwTwa)! ATwTwg (5.4.15)
where the A and B matrices in this equation depend on the values of the estimate chmf’Nn((')k)-

To gain insight as to what weighting function to choose, we examine Eqns. (5.4.3-5).

Consider the use of the above methodology using the estimate G(z). Then, we find that the error

26 - 126 G@ 2z 118, =2 -a;2-2,))G(z) - (byz +by) (5.4.16)
= (22 -22-2)) (6@ - Gz8y) (5.4.17)

So,
6@ - Gzl = 1225 -[26(2) G@) z 116y / 22-az-a,. (5.4.18)

From Eqn. (5.4.18) we see that, if we want our parameter estimation method to be a least-squares
fit in the frequency-domain, then we want to choose a weighting function that is one over the
magnitude of the denominator of the nominal model. That is, if we choose the frequency weighting
function

fi(@)=1/1e/20T .5 &JOT 4 (5.4.19)

then using z = elOT in Eqn. (5.4.18), we can write

C-oL
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15@9T) - 69T 9y = £,(@) 161297 G(&OT) - [JOT G@OT) G@®T) T 1786

(5.4.20)
Thus, by using the weighting function of Eqn. (5.4.19), we actual find the parameter estimate that
corresponds to a least-squares fit, in the frequency-domain, between the estimate and the nominal

model. Of course, we do not know what the parameters a, and a, really are. We only have our

coarse a priori bound on the parameter space. So, one can only approximately choose the
frequency weighting function of Eqn. (5.4.19) using our coarse a priori knowledge of the

parameters a, and a,.

5.5 An Uncertainty Bounding Function for the Nominal Model

In this section, we discuss the computation of a discrete, frequency-domain error bounding

function for the nominal model G(ej T §). In addition, we will compute a magnitude bounding

function, Asun(ejka, 8), on the uncertainty Ssu(ejka, 8) at the frequency points corresponding
to @ for k=0, ..., N-1. In the following sections, we will shown how to obtain a continuous,

frequency-domain bounding function on Iﬁsu(ejmT, 8)! for all o, using the discrete bounding

function that will be computed in this section.
The nominal model at time index n is obtained by using the nominal model structure and the

current parameter vector estimate 6. Thus, we can compute the value of the nominal model
G(el%T, §) for k=0, . ., N-1.
Using the triangle inequality, we find that at time index n, and for frequency o,
IGEIKT, 8) - Gyrye@ kDI <
IG@T, 8) - GymN™ @) + IGeymeN"(@) - Grrue@ Pk D (5.5.1)
and, using Eqns. (5.3.3-4),
IGEPT, 8) - Grye@Pk DI <1GE%T,8) - Gy N™ @ + Ecume NY@)-  (5.5.2)

We can now find a bound on Ssu(ej(‘)kT, 6). Rewriting Eqn. (3.7.1),
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Crrue@PkT) = GIkT, 6) [1 + 8, (KT, §)], fork =0,..,N-1. (5.5.3)
So, rearranging yields,

84y ©kT, 8) = [ Gy @KT) - G(eI%T, 8) 1/ G(eI2kT, §). (5.5.4)
Using Eqn. (5.5.2), we find the bounding function,

1B, ©kT, )l < A, N KT, ), (5.5.5)
where

Ay "E©kT, §) =

( 1IGE%T,8) - GymeN™ @) + EgumeN™@yp) }/1GE2T,8),
fork=0,..,N-1. (5.5.6)

and where we have included a superscript 'n’ after the Asu to denote the fact that this bound on

ISSu(ejka, 6)! depends on the time index n, since chmf’Nn(mk)’ Ecumf’Nn(“)k) and also 8

depend on n. The uncertainty bounding function of Eqn. (5.5.6) need only be computed before a
control-law update.

In summary, we have shown how to compute a discrete function Asun(ejka, 6) that

bounds the net effect of structured and unstructured uncertainty of the current nominal model

G(ej 0y T, 6) relative to the true plant, at the frequencies, wg, @}, . . Op. 1 We used the nominal
model structure of AD1.1, the current parameter estimate 6, and the cumulative frequency-domain
estimate chmf’Nn(C‘)k) and corresponding cumulative error bounding function Ecumf’Nn(“’k)
that were developed in Section 5.3.

5.6 The Effects of Unstructured Uncertainty on Frequency-domain Estimation

In this section, we will present two philosophies concerning the treatment of the unstructured

uncertainty 8u(z). We discuss how to treat the unstructured uncertainty when it is:

1) time-invariant, and 2) time-varying. The time-varying philosophy will require a modification of
our estimation methodology. This discussion is important since it describes how to modify the
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robust estimator for situations where the phase of the unstructured uncertainty can change with
time.

5.6.1 Components of the Modeling Uncertainty

In this subsection, we examine the components of the multiplicative modeling uncertainty

SSu(z). From Eqns. (3.6.1) and (3.7.1) we know that,
Gyrye(@ = G(z.8y) [1 + 8, ()] = G(z,8) [1 + 8 (z,6)] (5.6.1)

where we do not show the time dependence of @ for convenience of notation. Rearranging yields,

8,,(z.8) =[G(z8y) - G(z,6)1/G(z,8) + [G(z8y/G(z 6)15(). (5.6.2)
We define the structured uncertainty,

8(z.6) = [ G(z.8y) - G(z.8) 1/ G(z.6), (5.6.3)
and the transfer function,

Hgy1(z.8, 6) = G(z.8p) / G(z, 6) (5.6.4)
so that we can write

8, (2, 8) = 8(2, 6) + Hgy, (2.8, 6) 5,(2). (5.6.5)

The methodology of Sections 5.1-5 can be used to find a frequency-domain bounding function on

ISSu(ejO)kT, é)l where sign cancellations can occur between the two terms in Eqn. (5.6.5).

5.6.2 Modeling the Unstructured Uncertainty: Two Philosophies

In Sections 5.1-5, we assumed that the partially known plant was linear and time invariant.
If the plant is truly time invariant, then the uncertainty bounding function of Eqn. (5.5.6) will be
able to bound the total uncertainty due to both structured and unstructured uncertainty. In this case,
we are actually identifying the unstructured uncertainty, although it is lumped together in the total
uncertainty. Since, in practice, the unstructured uncertainty may not be modeled well by a linear
time-invariant system, we suggest an engineering modification to the approach of Sections 5.1-5.
We suggest that the final uncertainty bounding function should not be permitted to become less than

the a priori bounding function on the unstructured uncertainty A, . Said another way, we don't
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require our frequency-domain estimation method to identify the unstructured uncertainty. By

making sure that our final bounding function doesn't become less than A,,» we guarantee that our

robust adaptive control system will, at least, be robust to the presence of the unstructured
uncertainty. We can take a more rigorous approach to this problem.

If we view the unstructured uncertainty Su as being able, at any time, to have any phase and

any magnitude that is less than the bounding function A,;» then we must modify our

frequency-domain bounding methodology. We will develop an approach that bounds not

18,1k, 8)! but, instead,

18,9k, 8)1 + IHgy, (61T, 0,,8) 5,(€1%T. (5.6.6)

Although we continue to view the low-frequency dynamics of the plant as being time-invariant, we
allow in this second philosophy for the high-frequency unmodeled dynamics to be time-varying.
By bounding Eqgn. (5.6.6), we are implicitly saying that the unstructured uncertainty can change to
any phase and our frequency-domain uncertainty bound will still be valid. We are guarding against
the possibility that during one period of time, the phases of the two terms in Egn. (5.6.5) are
opposite, and during a later time period the phases of the two terms are the same. So, if we
identified the plant during the period when the terms were of opposite phases, and updated the
compensator based on this information, then the system would not be robustly stable in the face of
the later situation where the terms add. In this philosophy, we only want to ask our
frequency-domain bounding methodology to identify the structured uncertainty. We use our a
priori' bounding function to account for the unstructured uncertainty. If we want our robust
adaptive controller to be truly robust in an environment where the unstructured uncertainty can be
changed, but must always satisfy our a priori bound, then the following methodology must be
used.

5.6.3 Computing a Robust Uncertainty Bounding Function for the Time-varying Case

In this subsection, we will compute a frequency-domain bounding function on Eqn. (5.6.6)

using the bounding function Asun(ejka, é) of Eqn. (5.5.6) that satisfies

18, ©IOkT, B)l < A, PEKT,8), fork=0,..,N-1. (5.6.7)
Using the triangle inequality and Eqn. (5.6.5) we find that




Chapter 5 Page 101

8,@IOT, B)l < 18, (E1OKT, 6)l + Hgyy; (612K, 0, 6) 5,6/ (5.6.8)
< A MEIkT,8) + Hgy, 2T .05, 6) A, /KT, (5.6.9)
Thus, we find that
8,@IOkT, )l + IHgy (19K, 0,,8) 5,12k D)I (5.6.10)
< Ay, MEOKT, §) +2 Hgy €9k T,0,,8)1 A (81K D). (5.6.11)

This allows us to define the robust frequency-domain bounding function Asun that satisfies
. . A . A -0) N co) A -0) T A
18,,@%T, 80 < 15(VKT, 81 + IHgy, /kT,00,6) 3, @k DI < A MEekT,8),

fork=0,..,N-1 (5.6.12)
where

Ay, MEOKT, 8) = A MEOKT, 6) + 2 Hgy (19T 0,,8) 4,k (5.6.13)

and where
H @IT) = min( [1+ A MeI%T,8) /(1 - A @Dy,

sup  Hgy (€1 T,0,,6)! ). (5.6.14)
6,,6c©

The first term of the above minimum is considered only when Au(e-‘ ka) < 1. The supremum in
Eqn. (5.6.14) can be computed off-line; however, ﬁsul must be computed on-line since it uses the

on-line computed function Asun‘ The first term in the minimum of Eqn. (5.6.14) is derived from
the fact that

GEIOkT,00) / GEOKT, 8)l = I[1+ 8, @kT, 8]/ [1+ 5,k DI (5.6.15)
which can be shown using Eqn. (5.6.1).

5.6.4 Section Summary

In this section, we have discussed two different ways to find a bounding function on the
uncertainty. If we assume that the unstructured uncertainty is time-invariant, then we use the
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bounding function A_ . that was derived in Eqn. (5.5.6). However, if the unstructured
su

uncertainty can change its phase with time, then we must use the robust bounding function Asun

that was derived in Eqn. (5.6.13). In Sections 5.7 and 5.8, we will use the bounding function

Asun’ corresponding to the time-invariant philosophy, in all of the derivations. If the time-varying
philosophy is more appropriate in a given problem, then the robust bounding function Asun could
be used in place of Asun’ in the equations of Sections 5.7 and 5.8. The robust bounding function

Asun is more conservative than the bounding function Asun for the time-invariant philosophy.

5.7 A Smoothed Uncertainty Bounding Function

In this section, we discuss the computation of a smoothed, magnitude bounding function,

Ksun(ei“)T, 6), on SSu(ejmT, 6) through the use of the magnitude bounding function
Asun(ejwkT, é), which was computed in Section 5.6, and a smoothness condition. This

smoothness condition is the magnitude bounding function on the derivative of Oy First, we will

derive a conservative value of the smoothness condition using only a priori information. Then, a
tighter smoothness condition will be computed using the on-line knowledge of the bounding

function Ay P(eI®kT, ).

3.7.1 Computing a Worst-case Bounding Function on the Magnitude of the Derivative of Ssu

Using Only a priori Information

In this subsection, we will use only a priori information to compute a worst-case bounding

function on IdSSu(ej mT, 6) / dwl. We will express the derivative of 8, in terms of the derivative of

6, so that assumption AD1.4 of Section 3.6 can be used. From Eqn. (5.6.1) we know that,
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8,,(2,8) = [G(z.8p) / Gz O] [1+5,@)] - 1. (5.7.1)

We seek a magnitude bounding function on the derivative of SSu(z, 8) with respect to frequency.
We find,

d8,(eI0T,8) /do = (@8¢y(z,6)/dz) | (deJOT /da). (57.2)
2=eJ0T
So, .
18, (eI®T,8) / dwl = T d8g,(z,6) / dzl |. (5.7.3)
2=eJOT

A similar equation holds for 8, (€/®T)/dw. From Eqn. (5.7.1) we find that,

dﬁsu(z,é)/dz = z.6 yA 2)-G(z z.0)/dz) 101+ A
G(z, §)2
+ [G(z.6p) / G(z, )] (dd,(2) / dz). (5.7.4)
We define,

Hyn(z.80, 8) = [G(z.0) (dG(z.80) [ d2) - G(z.0y) (4G, 6)/dz)1
G(z,6)2 (5.7.5)
so that we can write,
d8g,(z,8) / dz = Hg (2,8, 8) [1 + 8, ()] + Hgy1 (.8, 6) (d8,(2) / dz), (5.7.6)
where Hg,; was defined in Eqn. (5.6.4). We note that, when 6 is close to 8, then Hgy~1 and
Hsu2=0. SO,

dd(z,6) / dz =~ dd (2) / dz. (5.7.7)

Continuing our bounding development, it can be shown, using the triangle inequality, Eqns.
(5.7.3) and (5.7.6), and assumptions AD1.3-4, that

1d3,&°T,8) / dol <

T Hgyy@9T,0,, 01 11 + A, @D + Hg, @70, 01 V,@T), Vo  (57.8)




Chapter 5 Page 104

In the above equation, we know that 90 € ©; however, we must include an additional fact
concerning the estimated parameter vector 8. Since we know that the true parameter vector 6, is in

O, it is reasonable to constrain our parameter vector estimate 8 to be in ©. We note that the

parameter vector estimate resulting from either of our parameter estimation methods is not
necessarily in ©. Thus, the raw parameter vector estimate yielded by these estimators will be

projected onto the set © to produce the final parameter vector estimate. This is the justification for
the statement.

Fact: 6 © (5.7.9)

Now, using Eqns. (5.7.8-9) we compute a "worst-case" a priori bounding function,
joT 3 joT
I8, @7, )/ dool < Vg (3P (5.7.10)
where,

Vsu,wc(eimT) =

sup  { T IHgyp(@9T,00,0)1 [1 + A (eIT)] + 1Hg, (19T, 8, 6)l v, (€®T) }, Voo
6.6 © - (5.7.11)
This bounding function is computed off-line.

3.7.2 Computing a Tighter Bounding Function on the Magnitude of the Derivative of §su

Using On-line Information

In this subsection, we will derive a tighter bounding function on the magnitude of the

derivative of 8| by using knowledge of 8, that is gained on-line. The worst-case bounding

function of Eqn. (5.7.11) can be very conservative. That is, in Eqn. (5.7.11) we must assume that

6, and 6 can take any values in the parameter space. While, 6, and 6 may be far from one

another initially, if there is sufficient excitation, then 6 will eventually become closer to 8, In this

case, we can compute a tighter bounding function using our on-line knowledge of the magnitude
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bounding function on §_,,, which tells us how close our estimate is to the true plant.

su’
Now, from Eqgns. (5.6.1) we know that,

148, (2 0) = Gyrye(2) / Gz, ) = G(z.0) [1 +8,(2)] / G(z, 6). (5.7.12)

* We seek a magnitude bounding function on the derivative of 8, (z, 6) with respect to frequency.

Using Eqns. (5.7.4) and (5.7.12) it can be shown that,

ddgy(z,0) /dz = [ (dG(z0p)/dz) . (dG(z.8V/dz) ][1+ssu<z,é)1 +

G(z,8y) G(z8)
+ [G(z.8p) / G(z,8)] (d5,(2) / d2). (5.7.13)
We define,
Hy,3(z.8,0) = [ (dG(z8,)/dz) . (dG(z.8)/dz) ] (5.7.14)
G(z.8,) G(z,6)
so that we can write,
dd (z,6) / dz = Hgy3(z.80, 0) [1 + 8, (2. 8)] + Hgy) (2.8, 6) (dB,(2) / dz) (5.7.15)

where Hg,; was defined in Eqn. (5.6.4). Continuing our bounding development it can be shown,
using the triangle inequality, Eqns. (5.7.3) and (5.7.15), and assumption AD1.4, that

148, (19T, 8) / dool < T 1Hg3(I9T 0, B)1 [1 + Ag, (eI, 8)] + Hgyy (61T 0, 8)1 v, (@D,
Va. (5.7.16)
Now, using Eqns. (5.7.16) and (5.7.9), we compute the bounding function,
joT 3 joT
a3, 1%, 0) /dal < Vg MEPH) (5.7.17)

with

V@D = sup (T Hg 397,080,801 } [1+A,REOT, 8)] + Hy, @T) v @@T) },
8,6 © Vo, (57.18)
where ﬁsul(ejCDT) was defined in Eqn. (5.6.14).

The above bounding function of Eqn. (5.7.18) can be generated using the on-line computed

bounding function Asun(ejmT, é). Thus, as Asun(ejﬂ)T’ é) becomes smaller, so does our
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bounding function Vsun(ejmT). In Eqn. (5.7.18) and in Eqn. (5.6.14), which is used in Eqn.

(5.7.18), the supremums for Hy,,; and Hg,3 are computed off-line.

5.7.3 Using the Smoothness Condition to Find a Tighter Bound on the Magnitude of §su

In this subsection, we will use the bounding function on the magnitude of the derivative of

dg,, that was derived in the previous subsection, and the discrete bounding function on 13! that

was found in Section 5.5, to compute a tighter bound on ISSuI. This development is motivated by

the observation that, depending upon the spectrum of the input signal, one may have a very jagged

bounding function on the modeling uncertainty lssu(ejka, 6)l. That is, at the frequency point o)
the bound Asun (ej(')kT, %)) may be very tight, however, at an adjacent frequency point W), 1 the

bound Asun(ejwkﬂT, 9)) may be very poor. This situation is illustrated in Figure 5.1.

A Bsy

Iga C >
JS S/

Figure 5.1: Tlustration of the Need for Smoothing,.
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We can use the derivative bounding function Vsun(ejmT) to smooth our raw bounding function

Asun(ejka, é). However, we must first prove the following theorem.

Theorem 5.1: Let g(z) be a complex-valued function of a complex variable and let it be analytic on
an open set that includes the unit circle. If a real constant h is known such that

h= sup IdgeV)/dvl (57.19)
ve[a,b]
then
lg@el)l < hlv-al +Ig(efd), forve [abl]. ' (5.7.20)

Proof: Expressing g(z) in polar form,
g(z) = 1(z) 9@ (5.7.21)
we define the composite function

gy =relv) SLICM) (5.7.22)

where r(ejv) and G(ejv) are real-valued composite functions of the real variable v. We differentiate
to find

dg@Vy/dv = (dr(elVy / dv) eI0©@Y) 1 r(edv) 1) § o(eiv) / av) (57.23)
= [ @V /dv) +j r(eV) @0y /dv) ] el0@), (5.7.24)
So, we find
gy / avi2 = Idrely 7 dvi2 + irelV) (do(elY) / dv)12 (5.7.25)
= ldre) /vl < Idge?V) / dvl. (5.7.26)

Since g(z) is analytic in an open region that includes the unit circle, we know that the real-valued
composite function r(ejv) of the real variable v is differentiable. Using the mean-value theorem
yields,
eY) = (drelV)/dv) | (v -a)+r(e)?), forv e [a,b], where c € (a,b), (5.7.27)
v=C
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= r(eV) < ldr(elVy/dvl | Iv - al + (eJ®), for v e [a,b], where c € (a,b). (5.7.28)

vV=C
Eqn. (5.7.20) follows from Eqns. (5.7.19), (5.7.26) and (5.7.28).
QED.
Assuming the analyticity of ssu’ it can be shown, using Theorem 5.1, that
85T, )1 < 18, @PkT, 0)1 +100 - 0y Vi, M@y, 1) (5.7.29)
and
85,@T, 8)1 < 185, @ %+1T,8)i + Iy, 1 - 0l Vi M) (5.7.30)

forwe [mk,(ok +1] where
Vi (@011) = sup  { Vg e®T)), (5.7.31)
we [Oy,0r41]
and V_ "(eJ®T) is given by Eqn. (5.7.18). Using Eqns. (5.7.29-31) we see that

8@k 1T, 8)1 < 18 (@OKT, B)l + Iy, - @yl Vi, @0y, 1) (5.7.32)

and .
iasu(ej‘”kT, O < B, @ k+1T, B)1 + oy, - oyl Vg, D@y 7). (5.7.33)

From these equations we see that it may be possible to obtain a tighter bound on ISSu(ejka, 6)l

than Asun(ej“)kT, 8), by using the bound at an adjacent frequency point, Asun(ejmk-lT, 6) or

Asun(ejwkHT, é), along with the smoothness information of V This observation is useful,

su,i*
since an input signal can have a lot of energy at a given frequency point but very little energy at an
adjacent frequency point. By rippling our new lower bound from, first the right and then the left,
in terms of the ordering of the frequency points, we can find two new, tighter bounds on

ISSu(ej(’)kT, 6)l. Thatis, we improve on our bound first by using information from the left (lower

frequencies) and then by using information from the right (higher frequencies). In Figure 5.2, we

show how information can be used from the lower frequency point @, _; and the higher frequency
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point @, . ; to find a tighter bound at frequency .. In this figure, the information from the lower

frequency point e _; provides the tightest bound at frequency .

'\

Slope =+V, ; (0, 1, @) Slope = -V ; (@0, @ 1)

E A su= A su,l E

i : !

i : :

' 1 1

' 1 1

rC ' | :
), | | ! >
-1 " O ©

Figure 5.2: Dlustration of Smoothing.
The notation for this figure is defined below. However, we first define
Bjpe = V41~ O = Og /N (5.7.34)

where again o is the sampling frequency. Then, the two smoothed bounding functions are given

by the following recursive equations where the 'l' and 'r' denote rippling the new bounds from the
left and the right, respectively.

Left Bound:

Zsu,ln(ejka’ 6) = min { Ksu,ln(ejmk'lT’ é)""”incvsu,in(‘”k-l"”k)’ Asun(ejka’ 0))
for k=1,2,..,N22

where Ay (30T, 6) = A Pel®0T, 6). (5.7.35)



Chapter 5 ’ Page 110

Right Bound:
B P@KT,8) = min { B, MeIk+1T, B)ray, Ve My, 1) Ay M@K, 8) )
for k=(N/2)-1,(N/2)-2, ..,0

where A MeON2)T,8) = A MO, ). | (5.7.36)

We define the composite smoothed bounding function,
su"@%T,8), &y BT, 6) )

for k=0,..,N/2, (5.7.37)
which satisfies

A M@ ?T,8) = min { A

184, PkT, 8)l < K, MeI%T, 8) < A, MeI%T, ), fork=0,.., N2, (5.7.38)

Since the impulse response corresponding to the transfer function Ssu(z, 8), is real-valued, we

know that,
185, @I NI T, B)1 = 18, (I%T, 0) < B ek, 6) < A NI KT, §),

fork=1,..,(N/2)-1. (5.7.39)
Thus, we need only compute the various bounding functions for k =0, . . , N/2, since the
information for the frequency points k = (N/2)+1, .., N-1 is contained in the information for the
frequency points k=0, . ., (N/2).

As a final note, we point out that the on-line computed bounding function Asun is used to
compute the derivative bounding function that is used along with Asun itself to compute a new,

smoothed bounding function Ksun. Thus, the newest smoothed bounding function could be used

recursively to yield yet a tighter smoothed bounding function. That is, the newest smoothed
bounding function could be used to compute a tighter derivative bounding function and, hence, a
tighter new smoothed bound. We will not pursue the possibilities for recursion further, as it is not
likely to greatly improve the bounding function. As a final note, we point out that the computation
of the smoothed bounding function is an on-line operation that cannot be performed in a parallel
fashion. That is, we must compute in a series fashion, the recursion of Eqns. (5.7.35-36) for each
frequency point.
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5.8 Bounding Inter-sample Variations

In this section, we discuss the computation of a safety factor that must be added to the

smoothed, discrete bounding function Xsun(ejka, é) to account for inter-sample variations.

Ultimately, the uncertainty bounding function at discrete frequency points will be used in
stability-robustness tests to update the compensator. The stability-robustness tests really use an
uncertainty bounding function that is a continuous function of frequency. Since the actual
computations will be performed with the uncertainty bounding function that is a discrete function of
frequency, we must add the aforementioned safety factor to the discrete function to account for the

worst possible peaks that may occur between frequency samples . We will choose this additive

safety factor in such a way that the largest inter-sample variations lie below a line drawn between
the final values of the uncertainty bounding function at two adjacent frequency samples. This idea
is illustrated in Figure 5.3, where we have yet to define the notation in the figure. Now, since

84,,(€°T, 8) is assumed to be analytic, we can use Eqns. (5.7.29-30) to find,
184, 2T,8)1 < min { 18T, 8)l +100- @) Vo, @04,
18, @Pk+1T,0)1 + Iy 1 - 0l Vg (00,011 ) (5.8.1)

forwe [y, 0o +1]. Thus, we define a discrete bounding function Ksun(ejka, é) that includes
the additive safety factor and that satisfies

18, @9kT, ) < A, NEeI%T, ), (5.8.2)
where, using Eqn. (5.8.1), we choose

A, P@kT,8) = B M@k T, 8) + (wy / 2) max { Vg Hwy_1.0p), Vg M@0, ),

fork=1,..,(N/2)-1, (5.8.3)
where -

A m@90T,6) = A M(e0T, 8) + (04, /2) Vg, Heg,01) (5.8.4)

A MEON2)T,8) = B N@ON2T,8) + (@40 /2) Vo HON)- 10N (585)
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Again, the values of Ag,™(©/®kT,8) for k=(N/2)+1, .., N-1 can be found from the values of
Zsun(ejka, 8) for k=1, . ., (N/2)-1. By using the bounding function of Eqns. (5.8.3-5), we
guarantee that a line drawn between the values of Zsun(eika, 6) and Xsun(ej"’kHT, 8) will

bound ISSu(ej(’)T, é)l foroe [(ok,wk +1]. This is illustrated in Figure 5.3.

4
-~ jw, 1T
| Ay @ Pkt1™)
Agy€19kT)
:
]
E (@4nc /2) Vsu,i
@inc 12 Vg 5 :
1~ jo, . 1T
Y D K gy (e Pke1T)
~ (0
B @ %k E
: 1
- :
]
rc ' N \ :
—// | — ! >
Oy D1 ®
©@-0)V i+ X (eI 0%T) - @y = O Vg + By @ Ok1T)

Figure 5.3: Bounding Inter-sample Variations.

5.9 Summary

In this brief section, we will place the results of this chapter in perspective and then
summarize the methodology for computing the final uncertainty bounding function. In this chapter,
we have developed frequency-domain methodologies for 1) finding a parameter estimate and,
hence, a nominal plant model; and 2) finding a frequency-domain bounding function on the
modeling uncertainty corresponding to this nominal model. It is emphasized that the
frequency-domain error bounding methodology requires only a parameter vector estimate to do its
job. This parameter estimate can come from either the robustified least-squares parameter
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estimator, which uses time-varying dead-zone, or the frequency-domain parameter estimator of
Section 5.4. Later, in the simulations, it will be shown that the dead-zone based parameter
estimator has some weaknesses, so the frequency-domain parameter estimator will be the parameter
estimator of choice.

Since the development of this chapter has been quite involved, we present the summarizing
flowchart of Figure 5.4. This flowchart shows what computations are done off-line, on-line at
every sample time, and on-line before a control-law update. Further, since the computation of the
final uncertainty bounding function requires several steps, we summarize the steps of this
procedure.

Uncertainty Bounding Procedure:

1) Compute the raw bounding function, A, ™, on I3, | [Egn. (5.5.6)].

a) Time-invariant Unstructured Uncertainty Philosophy: Use Asun in Step 2.

b) Time-varying Unstructured Uncertainty Philosophy: Use Asun in Step 2 [Eqn. (5.6.13)].
2) Compute the smoothness condition, Vsun’ on Id3, /dwl based on Asun (or Asun)
[Eqn. (5.7.18)]. |

3) Compute the smoothed bounding function, A__ P, on 13, using A, ™ (or Asun) and V"

su ?
[Eqn. (5.7.37)].

4) Compute the final uncertainty bounding function, Ksun’ including the safety factor, on IBSuI

using A, P and VB [Eqns. (5.8.3-5)].
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Figure 5.4: Development of the Frequency-domain Bounding Method and the Frequency-domain
Parameter Estimator.
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CHAPTER 6.
DESIGN CHOICES, DISTURBANCE MODELING AND COMPUTATIONAL
ISSUES

6.1 Introduction

In this chapter, we will discuss how to choose various design parameters, such as the
sampling period, the DFT length for both the time-domain parameter estimator and the
frequency-domain estimation method, and the memory length M. In addition, questions of how to
specify the bounding functions in the assumptions of the robust estimator and how to model the
disturbance are examined in this chapter. We also consider the computational requirements of the
robust estimator.

First, in Section 6.2, we consider the choice of the sampling period that is used in our
sampled-data control system, which controls the continuous-time plant. Since we are interested in
the robust estimator primarily for the purpose of closed-loop control, we must consider both the
identification and control impact of the sampling period choice. Several different models for the
additive output disturbance are examined in Section 6.3. The specification of the bounding
assumptions of the robust estimator are discussed in Section 6.4. We will examine the design
choices for the time-domain parameter estimator and the frequency-domain bounding methodology
in Sections 6.5 and 6.6, respectively. In Section 6.5, we will consider the choice of the DFT
length from the perspective of the time-domain parameter estimator alone. That is, it would be
convenient if the DFT length that is used in the bounding mechanism of the time-domain parameter
estimator was the same as the DFT length that is used in the frequency-domain bounding
methodology, since then we would only have to compute one DFT of the input signal at each time
index. However, we shall see in this chapter that the time-domain parameter estimator of Chapter 4
will, in general, require a shorter DFT length than the frequency-domain bounding methodology of

Chapter 5. Thus, in the respective sections, we will use the notation N; and N¢ to refer to the DFT

lengths corresponding to the time and frequency domain methods, respectively. In Section 6.7, we
examine the computational requirements of robust estimator by examining. The key contributions
of this chapter are the completion of the robust estimator design methodology and the investigation
of the extensive computational requirements of the robust estimator.
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6.2 Choice of Sampling Period and Closed-loop Objectives

The choice of the sampling period in the robust estimator involves a tradeoff between the
target closed-loop bandwidth which we're trying to achieve and the deleterious effects of the
high-frequency unmodeled dynamics on the identifier. To better understand this tradeoff, in
Subsections 6.2.1 and 6.2.2, we will first investigate how the choice of sampling period affects
our achievable closed-loop bandwidth and the performance of our robust estimator. Then, in
Subsection 6.2.3, we will examine the tradeoff that arises.

2.1 Sampling Peri hoice and the ed-1 Bandwidth

In this subsection, we assume that the designer has some target closed-loop bandwidth that
he wishes to achieve. In the field of digital control, sampling rates are typically chosen to be

between 6 and 10 times the target closed-loop bandwidth, which we denote by @j. This is only a

rule of thumb since some applications require faster sampling rates. The phase shift at @, .}, due to

the delay of the discrete-time control system, can be computed as follows.
Phase shift at ®, (in degrees) = -360°/ (g / o)) : (6.2.1)
where again the sampling frequency is given by
o,=27n/T (6.2.2)
where T is the sampling period. We compute the following values.
Table 6.1: Sampling Period Choice and the Phase Shift at the Target Closed-loop Bandwidth.
(W /@ | Phase shift at w,.; (in degrees)
5 I -72°
10 I -36°
|
I

15 -24°
20 -18°

Thus, given no other constraints, we want to choose the sampling period as small as possible so as
not to introduce a large negative phase shift near the crossover frequency of the system.

6.2.2 Sampling Period Choice and the Disturbance

In Subsection 2.1.2, we saw that to avoid aliasing effects, we must choose the sampling




Chapter 6 Page 117

frequency @ such that /2 is greater than the largest frequency at which the disturbance has

significant energy. In practice, the anti-aliasing filter of Figure 3.1, whose presence we do not
include in the analysis of this thesis, will attenuate the disturbance at high frequencies. See Astrom
and Wittenmark [31, p.28] for a discussion of anti-aliasing filters. Since we explicitly include
aliasing effects into our bounds, as in Eqn. (3.5.2), we will not consider this point further.

6.2.3 Sampling Period Choice and Identification QObijectives

In this subsection, we consider how to choose the sampling period so as to have good
performance of our robust estimator. Our goal is to choose the sampling period so that the
high-frequency unmodeled dynamics will appear small in magnitude, in the discrete-time model of
the plant. It was shown by Rohrs et al. [21], see Section 3.3, that the larger the sampling period
is, the smaller the continuous-time unmodeled dynamics will appear in the discrete-time plant.
Figures 6.1-2 illustrate how the choice of sampling period affects the discrete-time unmodeled
dynamics. In Figures 6.1 and 6.2, we show the magnitude bounding function on the discrete-time

unstructured uncertainty for two different choices of sampling period, T, and Ty, where (o), and

(@), are the corresponding sampling frequencies. It can be seen that the smaller the sampling

frequency is, the smaller the magnitude of the unstructured uncertainty will be. Thus,

slow-sampling leads to a discrete-time system that can be modeled accurately by the low-frequency
nominal model.

6.2.4 The Tradeoff Between Closed-loop Bandwidth and Identification Goals

In this subsection, we summarize the tradeoff involved in the choice of the sampling period.
We want our sampling frequency ©, to be 6-10 times the target closed-loop bandwidth @, and we

want ©/2 to be smaller than the frequency at which the unmodeled dynamics magnitude bound

becomes greater than unity. Figure 6.3 illustrates this situation. In this figure, we have denoted
the frequency at which the unstructured uncertainty magnitude bound becomes greater than unity by

O 1) the maximum closed-loop bandwidth. That s, the closed-loop system cannot have a

bandwidth greater than ®p,c] and still be robustly stable to the unstructured uncertainty shown in
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the figure. With this notation in mind, we consider the following examples.

Example 1: If Ol = 10 O] and we choose g = 10 Oy then (o / 2)=(1/2) Ol

In this example, we are able to meet all of our objectives for the choice of the sampling period.

That is, since ((oS /12)<m the unstructured uncertainty will appear small in the discrete-time

mcl’
plant for this choice of sampling frequency. Now, we consider a more difficult case.

Example 2: If ® el = Dl and we choose o = 10 O] then ((DS /12)=5 O el

In this example, we see that (g /2) > @, ; so the unstructured uncértainty will appear large in the

discrete-time plant. Thus, for this example, we see that when the maximum closed-loop bandwidth
that is consistent with stability-robustness requirements is desired, the unstructured uncertainty will
have a large effect on the robust estimator.
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Figure 6.2: Continuous and Discrete time Unmodeled Dynamics for Sampling Period Ty, < T,.

Notice that for the faster sampling period, the unmodeled dynamics bound is larger at high
frequencies.
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Figure 6.3: Frequency Diagram for Sampling Period Choice.
6.3 Specification of the Bounding Functions in the Assumptions
6.3.1 Introduction

The specification of the bounding functions of assumptions AC1.3-4 and, hence, AD1.3-4
of Chapter 3, are examined in this section. The landmark paper by Doyle and Stein [34] provides
an insightful discussion of the multiplicative, unstructured uncertainty plant representation which
we use throughout this thesis. This paper motivates the use of the unstructured uncertainty plant
representation and mentions various physical phenomena that can be characterized in this way.
Later, in the simulation part of this thesis, we shall generate the magnitude bounding function on
the unstructured uncertainty in a rather artificial way, since we are not motivated by a specific
physical example.

While the bounding function of assumption AC1.3 (or AD1.3) has become a widely used
uncertainty representation, the smoothness assumption of AC1.4 (or AD1.4) has not been used
previously in the literature. The specification of a magnitude bounding function on the derivative of
the unstructured uncertainty is even more difficult than the specification of a magnitude bounding
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function on the, only coarsely known, unstructured uncertainty itself. The specification, from
physical principles, of the smoothness condition of AC1.4 may be difficult. In the following
subsection, we will examine several examples in an effort to better understand the requirement of
assumption AC1.4.

2 Understanding Assumptions A -4 1,3-4

In this subsection, we will examine three examples of high-frequency unmodeled dynamics
and will compute the bounding function of assumption AC1.4 for each. Intuitively, the unmodeled
dynamics are largest in the high-frequency range, that s, in the frequency range above the
crossover frequency of the system. The low-frequency dynamics of the plant are assumed to be
captured by the low-frequency nominal model, in which the uncertainty is structured. We now
consider three simple examples to gain insight.

Example 1; (First-order pole) Consider the hypothetical multiplicative uncertainty,

1+8°,(s) = a/(s +a), where a >0 and ' (63.1)
where, in practice, '’ is a high-frequency pole, relative to the poles of the nominal model. Then,
we find that,

8u(s) = -5/ (s +a). | (6.3.2)
We compute,

18°,Go)l = w/ v w2 + a2 »and (6.3.3)

1d5¢ ,(j@) / dol = a/ (@ + a2). (6.3.4)

We consider the following special cases:

Low-frequency Case: If o << a, then

13°,Go)l = ©/a, (6.3.5)

Id8%,Gw) / dol = 1/a.‘ (6.3.6)
High-frequency Case: If ® >> a, then

13°,Go)l = 1, (6.3.7)

148 ,Gw) / dol = a/ . (6.3.8)
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The values of 18°,(joo)} and 1d8%;(jw)/dcl are shown in Figure 6.4 for a=1 rad/sec. Thus, if we

know that the multiplicative uncertainty is composed only of a first-order pole, then we can bound

Idﬁcu(jo))/dcol using a lower bound on 'a’', the magnitude of the high-frequency pole.
Example 2: (Second-order pole) Consider the hypothetical multiplicative uncertainty,
1+8%() = @ 2/ (2 +2L o s +wp?), (6.3.9)

where we assume { < 1 and note that, in practice, @, is a high frequency relative to the natural

frequencies of the nominal model. Then, we find

&) = -ss+28 @)/ (2 +2L oy s+wp?). (6.3.10)
We compute,

iGN = OVe?+4 w2 | V(@2 02?2 +4 20 e? ,and (6.3.11)

145, Go) /dool = 20,2 Y2+ o2 / [(@*-o)?+40% 02 e?). (6.3.12)

We consider the following special cases:

Low-frequency Case: If o << @, then
I yGw)l = 2§/ o) o, (6.3.13)
1d3°, Gw) / dol = 2(/ 0, < 2/wp, (6.3.14)

Resonant-frequency Case: If o = o, then

18, Go)l = Vi+422 /0, (6.3.15)
1d5¢ Gy /dal = V1+82 /2 Cay). ' (6.3.16)

High-frequency Case: If ® >> @, then
15°, Gl = 1, (6.3.17)

I8¢, / dool = 2 @ 2/ @, (6.3.18)
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The values of I8°u(jm)l and Id8°u(jm)/dcx)l for this example are shown in Figure 6.5 for {=0.2 and

=1 rad/sec. From Eqn. (6.3.16) we see that if { << 1, then for the resonant frequency case,

3%, Go)l =1/, (6.3.19)

8%y Gw) / dol =1/ 2 L @), (6.3.20)

both of which can be very large. Thus, if we know that the multiplicative uncertainty is composed

only of a second-order system (with complex poles), then we can bound ISCu(j )| by using a lower

bound on {, and we can bound Idﬁcu(jco)/d(ol by using a lower bound on both { and .

Example 3; (Time delay) Consider the hypothetical multiplicative uncertainty,
1+ 80 = e3(Ty), (6.3.21)

where Ty is the time delay. Then we find that,

8,6 = 5T -1, (63.22)
We compute

18°,Ge) = 139D - 11 = 21sin(@ T4 /2)), and (6.3.23)

43¢ Gw) / dal = Ty. (6.3.24)

Thus, if we know that the multiplicative uncertainty is composed only of a time delay, then we can

bound IdSCu(jco)/d(ol using an upper bound on Ty, the time delay.

These three examples provide insight as to how to generate the bounding functions of
assumptions AC1.3-4. In Subsection 3.3.2, it was noted that the discrete-time unstructured
uncertainty is approximately equal to the continuous-time unstructured uncertainty, if the plant
rolls-off sufficiently fast. That is, we showed

30Ty ~ & (o), for-0/2 <@ <0y2. (6.3.25)

This means that the low-frequency cases given by Eqns. (6.3.5) and (6.3.13) are the most
significant approximations since, typically, the poles of the unmodeled dynamics will be at high

frequencies relative to /2. However, if the damping ratio of a second-order system is very small,
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then ISCu(i(o)I can be quite large as was seen in Eqn. (6.3.19). In this case, the full

frequency-folding summation must be used to compute the discrete-time bounding function, since
the plant, including the large resonant peak, may not have rolled-off enough to make the
approximation of Eqn. (6.3.25) accurate.

In Subsection 3.3.3, it was noted that the derivative of the discrete-time unstructured
uncertainty is approximately equal to the derivative of the continuous-time unstructured uncertainty
if the plant rolls-off sufficiently fast. That is, we shoyved

dS(OimT) /do = d8°u(jo)) / do, for-0y/2 <o < 0y/2. (6.3.26)

Again, since the poles of the unmodeled dynamics will be at high frequencies relative to ©¢/2, the

low-frequency cases given by Eqns. (6.3.6) and (6.3.14) are the most significant approximations.

However, if the damping ratio of a second-order system is very small, then |d8°u(jo))/dcol can be

large as was seen in Eqn. (6.3.20). In this case, as for the unstructured uncertainty itself, the full
frequency-folding summation must be used to compute the discrete-time bounding function, since
the plant, including the large resonant peak, may not have rolled-off enough to make the
approximation of Eqn. (6.3.26) accurate. The use of the frequency-folding summation, see Eqn.
(3.3.25), will result in a bound that is conservative, as was discussed in Subsection 3.3.3.
Further, the use of Eqn. (3.3.25) requires considerable analytical and computational work.
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Figure 6.5: Bounding Functions for Second-order Unmodeled Dynamics.
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6.4 Disturbance Modeling and Bounding the Disturbance DFT

In this section, we will discuss the satisfaction of disturbance assumptions of Chapter 3. In
practice, the specification of the DFT bounding function for the disturbance will probably be based
on empirical measurements of the disturbance spectrum. However, in this section, we do not
discuss the empirical generation of the bounding functions further, but instead will examine the
relationship between several disturbance models and the disturbance assumptions required by the
robust estimator. Specifically, we will discuss how different disturbance models can or cannot be
used to find a bounding function on the magnitude of the DFT of the disturbance. The relationship
between the Fourier transform of the continuous-time disturbance d(t) and the DFT of the
time-sampled disturbance d[n] was discussed in Section 3.5.1. Since this relationship was rather
complicated we will work directly with discrete-time disturbance models, in this section. That s,
we will consider the DFT of the disturbance signal directly instead of performing the integrals of
Eqgns. (3.5.13-14). In order to be able to be used in the robust estimator, a disturbance model must
be able to satisfy assumptions AD2.1-2.2 of Section 4.4. As we will see, all bounded disturbances
satisfy AD2.1-2.2.

6.4.1 Bounded-but-Unknown Models

In this subsection, we examine a bounded-but-unknown disturbance model. That is, we
assume that the discrete-time signal d[n] satisfies, 4
Bounded-but-Unknown Model: ld[n]! < djax, V0. 6.4.1)

It's clear that this model satisfies assumption AD2.1; however, it's less obvious how the model
satisfies AD2.2. Consider the expression for the DFT of the disturbance, from Eqns. (2.1.5) and
(2.1.3),
N-1
Dn(@y) = 2 dim] e J@/Nkm, (6.4.2)

m=0
Given only the information that d[m] is bounded and real-valued, we must assume that d[m] is the

disturbance that maximizes IDN((ok)l for a given bound d,,,,. From Eqn. (6.4.2) its clear that if
complex-valued disturbances were permitted, then the disturbance signal that maximizes IDyj(ex)!

would be dmaxej (ZK/N)km, which would yield DN(O)k)=N. Since d[m] must be real-valued, we




Chapter 6 Page 127

instead consider the use of a sinusoid with magnitude dmax- The author believes that the

maximizing real-valued disturbance is given by

dfm] = dppay cOS(@Tm+6) = (dpay/2) (H(@Tm+) | o-j(@Tm+9)) (6.4.3)
whose DFT is

DN(@) = (A /2) { &9 e TN-D@-@)T72]  gin Ny -O)T/2 ) / sin( (@ -®)T/2) ) +
+ €710 e N-DOHOT/2] (sin N +@)T/2 ) / sin( @+ DT2)) ). (64.4)

In Eqn. (6.4.4) for a given o, and o, the phase shift ¢ can always be chosen such that the two

terms have the same phase and, hence, their magnitudes may be added. With reference to the
development of Section 3.5 and assumption AD2.2, we find that for the disturbance of Eqn.

(6.4.3), the following bounding function on the disturbance can be computed at the frequency .

DN(©K) = [@max /2 (_ sup  { Isin( N(@y-@)T/2 ) / sin( (@p-@)T/2 )l +
we [0,0]

+ Isin( N(@y +@)T/2 ) / sin( (@ +@)T/2)1 } ) (6.4.5)

This bounding function is shown in 'Figure 6.6, for N=20, d\,,x=1 and T=1 sec. Analogously,
the start-up bounding function in AD2.2 is given by

DN @) = (Apax /2 (, sup  { Isin( @+1)(@y-@)T/2 ) / sin( (- @)T/2 )i +
oe [0,0]

+ Isin( (n+1)(ay+@)T/2 ) / sin( (+@)T/2)I }). (6.4.6)

Thus, given only that d[m] is real-valued and satisfies the bounded-but-unknown model of
Eqn. (6.4.1), we can compute the preceding bounding functions on the DFT of the disturbance
and, hence, satisfy assumption AD2.2. Since Eqns. (6.4.5-6) are complicated, the following
simpler, but more conservative, bounding functions can be used

DN(®,) = dmax N, and (6.4.7)
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DN*(@y) = dpax (0+1), fork =0, .., N-1. (6.4.8)

15.0 20.0
l

MAGN1TUDE
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I
o
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0.0

0.0000 1.5708 3.1416 4.7124 6.2832
FREQUENCY IN RADS/SEC.

Figure 6.6: DFT Bounding Function for Unknown-but-bounded Disturbance.
4.2 Finite-Energy Model

In this subsection, we examine both continuous and discrete time, finite-energy disturbance
models. Consider the continuous-time finite-energy disturbance that satisfies,

Continuous-time Finite-energy Model: f d(t)2 dt < Bcfe < oo, (6.4.9)

-0

where -I—)-cfe is a known constant. This model does not imply that the sampled disturbance is

bounded, since the samples d[n] could correspond to peaks of d(t) that have zero measure. That is,
even though d(t) is square-integrable, we cannot conclude that Id[n]! is bounded nor can we
conclude that the DFT of d[n] is bounded. However, if d(t) is finite in energy and has its energy at
low frequencies relative to the sampling frequency, then we find that

NT N-1

[ do2dt =~ 2, dn]2T. (6.4.10)
0 n=0
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So, from Eqns. (6.4.9-10) we see that, if d[n] has its energy at low frequencies, then we can
approximately bound the finite sum of d[n]? in terms of the energy bound on the continuous-time
disturbance. This leads us to the following discrete-time finite-energy disturbance model.

N-1
Discrete-time Finite-energy Model: 2, d[n]2 < Dg, < . (6.4.11)
n=0

where Bfe is a known constant. From Eqn. (6.4.11) it can be shown that

i)l < VD¢, Vn, (6.4.12)
which satisfies assumption AD2.1. Parseval's relation for our definition of the DFT is given by

N-1 N-1

Y, dml? = (1/N) Z DN (6.4.13)

n=0

Using Eqns. (6.4.11) and (6.4.13) we find

DNl < ‘F—D;, fork=0,..,N-1. (6.4.14)
So, we find that

D@ = YN Dy, (6.4.15)
and, using this energy approach, we cannot do any better than

DN'”‘(mk) = ‘G\I?&, fork=0,..,N-1. (6.4.16)

Thus, a discrete-time finite-energy model can be used to satisfy assumption AD2.2.
©6.4.3 Stochastic Models

In this brief subsection, we will discuss stochastic disturbance models. If the disturbance is
modeled by a stochastic process that is bounded, such as a white process that has an uniform
distribution, then the bound on the disturbance model can be used in the bounded-but-unknown
model of Subsection 6.4.1 to satisfy AD2.1-2. That is, we essentially ignore the stochastic nature
of the model and must assume that the disturbance is a sinusoid, however statistically unlikely this
may be.

If the disturbance is modeled by an unbounded stochastic process, such as a white process
that has a gaussian distribution, then assumptions AD2.1-2 cannot be fulfilled. That is, white
gaussian disturbance models cannot be used in the robust estimator.
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6.5 Design Choices for the Time-domain Parameter Estimator

In this section, we will discuss the design choices for the robustified time-domain parameter
estimator, which was developed in Chapter 4. First, we will discuss the choice of the DFT length
for use in the computation of the time-varying bound on the effects of the unstructured uncertainty.
Then, we examine the choice of the input/output filter that is used in the parameter estimator.

6.5.1 Choosing the DFT Length for the Time-domain Parameter Estimator

In this subsection, we will discuss the tradeoff that arises when we choose the DFT length
N; for the bounding mechanism in the time-domain parameter estimator. From Eqn. (4.4.23) we

find that

e[n] = eggumln] + €premlnl, (6.5.1)
where
N
il = 1 { 2 Hy@%D U el ), forn=0,1,.. 652)
N k=0
and
€rem = 2 Umax )) hylpl. . (6.5.3)
p=N

First, we will examine the sum of Eqn. (6.5.2) for two different types of input signals.

Example 1: (Single sinusoid case) Let

u[n] = sin(® T n), forn>0, (6.5.4)

where (Dp=5, so that forn > N-1,

IUNMoy)! = | N, if p=0 or p=(N/2) and k=p,
N /2, if p#0 and p#(N/2) and k=p or k=N-p, (6.5.5)

0, otherwise.

where we have assumed that N is even. In this case, Eqn. (6.5.2) becomes
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zzsum[n] = ﬁu(ejmpT), forn>N-1, (6.5.6)
which does not depend on the DFT length N.

Example 2: (Wideband case) Let u[n] be a wideband signal that has constant average energy U,.

That is, we assume

N-1 N-1
Ue = (1/N) 2 ulnl? = (1/N?) 2, IUn@2, 6.5.7)
n=0 k=0

where we have used Parseval's theorem. Further, we assume that

IUN(mp)I = IUN(coq)I, for all p and q. (6.5.8)
So, using Eqns. (6.5.7-8) we find

Un(o)l = VN U, fork=0,..,N-1. (6.5.9)
In this case, Eqn. (6.5.2) becomes

N-1
Esumlnl = [ L IZ,O HyeTy] VN U, | | (6.5.10)

The first term of Eqn. (6.5.10), which is in brackets, is essentially an average which will remain
approximately constant for different choices of N. However, the second term of Eqn. (6.5.10) is
proportional to the square root of N. In summary, for this input signal, the time-varying bound of
Eqn. (6.5.10) grows with the square root of the DFT length N.

From examples 1 and 2 we see that the conservativeness of the bound of Eqn. (6.5.2)
depends strongly on the characteristics of the input signal. Example 2 reveals that there is a penalty
for choosing N large. We summarize the resulting tradeoff that dictates the choice of the DFT
length in Eqns. (6.5.1-3).

TRADEOFF: 1) Choose N small since the time-domain bound can increase with VN .

2) Choose N large to make the remainder term —za;rem[n] of Eqn. (6.5.3) small

relative to €2qumlnl-

The choice of the DFT length for the time-domain parameter estimator will be a balancing of these
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two opposing objectives.
.5.2 Choosing the Input/Ouput Filter

In this subsection, we examine the question of how to choose the filter F(z) of Eqn. (4.2.10)
that is used to prefilter the input and output signals before they are used in the parameter estimator
part of the robust estimator. In Section 4.2, it was discussed how prefiltering the input and output
signals by F(z) prevents a "near differentiation” problem in the parameter estimator. In this section,
we will present guidelines for the choice of the filter F(z). For convenience, we repeat the
equations for the DARMA model of the discrete-time plant where filtered signals are used. Thatis,
with reference to Eqns. (4.2.10-18),

ygin] = 0dn-11T0, + e [n], (6.5.11)

where

e,[n] =[B(q) F(g) 3,(q)] uln] + [A(q) F(g)] d[n]. ' (6.5.12)

From Eqn. (6.5.12) we see that the filter F(z) can be used to shape the frequency content of the

error signal €;[n]. Since the unstructured uncertainty 8u(z) is typically large at high frequencies,

F(z) will be chosen to be a low-pass filter. In addition, the filter F(z) should roll-off in the same
frequency range as the transfer function 1/A(z). If this is not the case, then the transfer function
[A(z) F(z)] will magnify the high-frequency components of the disturbance d[n] relative to the
low-frequency components in the error signal e;[n], as can be seen in Eqn. (6.5.12). The
bandwidth of F(z), which we will think of as the 3 dB frequency, should not be chosen to be too
low since it will attenuate signal energy in the frequency range in which the estimator is trying to
identify the plant. These insights lead to a tradeoff in the choice of the filter bandwidth.

TRADEOFF: 1) Choose the filter bandwidth small so as to attenuate the effects of

a) the high-frequency unmodeled dynamics 8u(z), and

b) the possibly high-frequency disturbance d[n].
2) Choose the filter bandwidth large so as not to attenuate the input signal energy in
the frequency range in which we are trying to identify the plant.

We can now develop a rule of thumb concerning the choice of the filter bandwidth.
Assuming that we are only interested in identifying the plant in the frequency range up to the
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bandwidth of 1/A(z), we find
RULE OF THUMB: Choose Bandwidth of F(z) ~ Bandwidth of 1/A(z,0) where 8 € ©, (6.5.13)
where we note that the bandwidth of the transfer function 1/A(z,9) depends on the, only co;rsely

known, parameter vector 6. This rule of thumb yields a transfer function A(2)F(z) in Eqn.

(6.5.12) that is approximately constant for all frequencies. Of course, this is only a rule of thumb
and, if we wanted to identify the plant at frequencies that are higher than the bandwidth of

1/A(z,8), we would use a filter with a higher bandwidth.
6.6 Design Choices for the Frequency-domain Estimator

In this section, we will discuss the design choices for the frequency-domain bounding
methodology, which was developed in Chapter 5. First, we will discuss the choice of the memory
length M that is used in the on-line computation of the frequency-domain error bounds. Then, we
examine the various tradeoffs involved in the choice of the DFT length for the frequency-domain
estimator.

6.6.1 Choice of the Memory Length for the Frequency-domain Bounding Method

In Section 6.2, we showed that a magnitude bounding function on the modeling error of the
frequency-domain estimate could be found using Eqns. (5.2.4-5), which we repeat here for
convenience.

M-1

ENP@) = 2 Igiruel)l TUNPla) - U@l +2 g ZMp I8 eruelPll
fork=0,..,N-1. (6.6.1)

In this subsection, we consider the choice of the integer M, which we will refer to as the memory
length of the true plant. The motivation for using Eqn. (6.6.1) is that the bound corresponding to
M=1in Eqﬁ. (6.6.1) is too conservative. That is, if we use M=1, then we are bounding

IENn(cok)I, the error due to the use of finite-length data, by assuming that the input signal u[n]

achieves its worst-case magnitude and phase. By choosing a value of M that is greater than 1 in
Eqn. (6.6.1), we use on-line information about u[n], in the form of the DFTs of u[n}, to compute a
less conservative bound. Our goal in this subsection will be to understand how to choose M so that
the second term of Eqn. (6.6.1) is small compared to the first term.
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It is advantageous to choose M such that
MT=51,w ' (6.6.2)
where T is the slowest time constant of the true continuous-time plant and T is the sampling

period. This choice is illustrated in Figure 6.7, which shows the impulse response of a first-order
system along with the choice of M given by Eqn. (6.6.2).

e
@
i
w
» S
e
=
D T
O‘—.
MT
o
N l
o
(o=
T T T T 7 .
0.0 1.0 2.0 3.0 4.0 S.0 6.0

TIME IN TIME CONSTANTS

Figure 6.7: Impulse Response and Illustration of Memory Length.

Intuitively, we are choosing M so that, roughly speaking, it is the memory length of the

discrete-time plant. That is, for time indicies that are greater than M = (5 Ty, / T), the impulse

- response is very small compared to its values for time indicies that are less than M. We will now
show that, for the choice of Eqn. (6.6.2), the infinite summation term is much smaller than the
value of the infinite summation term for M=1. That is, we consider the ratio

RatioM) = { 2. plgguelpll ) / { 2 plggrueldll 1. (6.63)
p=M p=1

We assume that the magnitude bounding function on the impulse response of the true plant is a
first-order system. So,
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Igryelnll < b eanT_y p", where p =e2T, (6.6.4)
Then, using Eqn. (C.10) from Appendix C we find that

RatioM) =pM-D (M-Mp +p). | (6.6.5)

As an example, consider the case where the sampling frequency is chosen to be 20 times the
slowest pole, which is 'a' in Eqn. (6.6.4). So, since

0, =271/T=20a, = T=n/(10a), (6.6.6)
we find .

p=e3T =" (®10) _ 573040, (6.6.7)
Using Eqn. (6.6.1) we find that _

MT = 5/a,or (6.6.8)

M=5/@T) =50/ = 16. (6.6.9)
From Eqn. (6.6.5) we compute

Ratio(16) = 0.04531 << 1. (6.6.10)
Thus we have shown that, in the example considered, by choosing

M =integer(5/(aT)) (6.6.11)

we find that Ratio(M) = 1/20. We consider other cases in the following chart where M is chosen
using Eqn. (6.6.11). '

Table 6.2: Memory length Choice and the Resulting Ratio(M).

(@ /a) | M I RatioM)
S | 4 [ 007253
10 I 8 I 0.05246 (6.6.12)
50 |40 | 0.04170
100 | 80 | 0.04060
500 | 400 | 0.03975

When the slowest pole of the plant is much slower than the sampling frequency, then the
discrete-time impulse response doesn't decay for many sample points so a very large value of M is
required.

If the plant has a zero at a frequency that is lower than the slowest pole, then we may need to
choose M even larger then the value of Eqn. (6.6.11). For example, if the low-frequency zero is
much slower than the slowest pole, then the impulse response will have a large peak so the value
of, for example 'b' in Eqn. (6.6.4), will be large relative to the case of the lowest frequency pole or
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zero being a pole. In fact, Eqn. (6.6.11) is only a starting point when trying to choose M.

Ultimately, we need to choose M large enough so that the remainder term Erem in

Ef,Nn((ok) becomes small enough for the robust estimator to provide performance-increasing

information to the control-law update algorithm. Using Eqgns. (5.2.4) and (5.2.17), we find that
forn > N-1,
M-1
Epnton) = { 2 Igiyelp] TUNYP(@y) - UNP(@)! + Erem + D@y ) / TUN™N@),
p=1
fork=0,..,N-1. (6.6.13)

We see that the remainder term Erem enters Eqn. (6.6.13) in the same way as an all-frequency

disturbance. Thus, it's not necessary to make Erem much smaller than the minimum of the

frequency function ﬁN(mk). Said another way, we need not choose M to be much larger than the

value that makes the error due to the use of finite-length data smaller than the error due to the
disturbance. In addition, from Eqn. (6.6.13), we see that the expected size of the input spectrum

also affects our choice of M. The larger the input spectrum is, for a fixed uy,,«, the smaller the

value of M needs to be to achieve the same additive error bound.
As a final note, we observe that if the input signal u[n] is periodic with period N, then

UN"P(w,)=UN"(e,) for all p, and the summation term in Eqn. (6.6.13) will become zero. Itis

unlikely that the reference signal of the closed-loop system will result in a plant input signal that is
periodic with period N. However, as we will later discuss, a periodic probing signal, which
enhances identification, could be chosen to have period N.

ice of fi ney- in Boundin h

In this subsection, we examine the issues involved in the choice of the DFT length N that is
used in the frequency-domain bounding method. Given that we have already chosen the sampling
period T, we must choose N so that:

1) The finite-length data intervals used to find the frequency-domain estimate of the plant

are long enough to observe the lowest frequency dynamics of the plant.

2) The resolution of the frequency-domain estimate is adequate.

These two goals are both fulfilled by a sufficiently large choice of N. However, we cannot let
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N—eo because we must also choose N so that the computational requirements of the algorithm are

not excessive. In the following two subsections, we will examine each of the above goals
individually.

6.6.3 Finite-length Data and Identification of Very Low-frequency Plant Dynamics

In this subsection, we will examine how N should be chosen so as to be able to identify the
very low-frequency dynamics of the plant. That is, the lowest frequency pole or zero of the plant
places a restriction on the choice of N. The results of this section will provide answers as to how
to choose N so that the robust estimator doesn't yield useless results. That is, if N is chosen to be

too small, then the frequency-domain error bounding function Ef,N“(cok) of Section 5.2 will be

very large. In this case, the robust estimator will not be able to provide performance-improving
information to the control-law update algorithm. To avoid this situation, we will develop rules of
thumb for the choice of N. .

First, we develop a lower bound for an intelligent choice of N by considering the lowest
frequency dynamics of the plant. Although we may not know the very low-frequency dynamics of
the true plant exactly, assumptions AC1.1-2 will, in general, allow us to find bounds on the lowest
frequency pole or zero. We denote the magnitude of the real part of the lowest frequency pole or

zero of the plant by o Now, consider the case where the plant is excited by an input signal at

slow*

the frequency W=0,1,. We want to observe at least one cycle of the plant input and output

signals at this frequency so that we can identify the plant. Define the slowest cycle time by

Tslow = 27/ 0tgo (6.6.14)
Then, by choosing N such that
NT > Tgow - (6.6.15)

where T is the sampling period, we will observe at least one cycle of the plant input and output

signals at the slow frequency o, Combining Eqns. (6.6.14-15), we find that

slow

N > o/ og,.. (6.6.16)

In practice, it will be advantageous to choose N to be larger than the lower bound of Eqn. (6.6.16);
however, this equation gives us a rule of thumb with which to work. To illustrate typical values
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for N consider the situation where @ =10 ®,}, ®,.;=100 0}, Then, the rule of thumb of Eqn.

(6.6.16) suggests that N > 1000. Clearly, for high-bandwidth control systems that have plants
with a large spread in pole locations, very large values of N can be required.

We now examine how the choice of N affects the frequency-domain error bounding
function. For convenience we rewrite Eqn. (5.2.17), the frequency-domain error bounding
function.

EsN™@y) = (EN™@y) + Dn(@y) ) / TUN™@y)l, when n > N-1, (6.6.17)
fork=0,..,N-1.

Further, using Corollary 2.1, we define the following conservative bounding function on

Ex®(e)l. Thatis,

ENY (@) < By, fork=0,..,N-1, (6.6.18)
where
Eue= 2Umax & i 1yelill (6.6.19)
i=1

and the subscript "wc" denotes the fact that this is a conservative "worst-case” bound. The
constant bound of Egn. (6.6.19) doesn't depend on the time index n or the frequency ®,. Eqn.

(6.6.19) corresponds to the remainder term Ercm’ for M=1, that was defined in Eqn. (5§.2.5).
Although the bounding function of Eqn. (5.2.4) is less conservative for values of M that are greater

than 1, we will first seek insight using the simpler constant bound Ewc' We rewrite Eqn. (6.6.18)

using our worst-case bound.

EycfN@) = ( Ey,e + DN(@) ) / TUNM@y)l, when n > N-1, (6.6.20)
fork=0,..,N-1.
where the subscript "wcf" denotes the "worst-case frequency-domain” error bounding function.
To analyze Eqn. (6.6.20), we first note that the magnitude of the N-point DFT of a signal, as
defined by Eqn. (2.1.5), will become larger as N increases. In fact, if the signal is a sinusoid, then

the magnitude of the DFT is proportional to N at a given ). So as N—-o, both

Dy(@,) — o, and (6.6.21)
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IUN“(mk)I —> oo, (6.6.22)
Since Ewc is a bounded constant that doesn't depend on N, we see from Eqns. (6.6.20-22) that as

N—eo,

EqciN"(@) = D(@p) /U@, whenn > N-1, (6.6.23)
fork=0,.., N-1.
Thus, for sufficiently large N, the frequency-domain error bounding function approaches the

frequency-domain disturbance-to-input signal ratio. The constant Ewc bounds the error due to

using finite-length data to compute the frequency-domain estimate. Assume for a moment that the
true plant has a finite-length impulse response of length M. Then, as is shown in Figure 6.8, the
input signal values, from before the DFT frame, contribute to the values of the output signal in the
beginning of the DFT frame and the input signal values, before the end of the DFT frame,
contribute to the output signal values for times past the end of the DFT frame. Thus, to obtain an
accurate frequency-domain estimate from the finite-length data intervals of N points, we must
choose N >> M in order to make these "end effects" small.

Figure 6.8: Illustration of End-effects in Frequency-domain Estimation.
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In Subsection 6.6.1, we developed the rule of thumb of Eqn. (6.6.2) by assuming that the
slowest pole or zero of the plant was a pole. This rule of thumb for choosing M can be written as

M=35 tleW /T=2x TSIOW /T. (6.6.24)

Thus, comparing Eqns. (6.6.24) and (6.6.16) we see that N must be chosen to be greater than M
and, in fact, to yield useful frequency-domain error bounds, N must be chosen as follows.

RULE OF THUMB 1: Choose N > g /o (6.6.25)

slow

where a 1/ (6.6.26)

slow = slow

That is, 0t} is the magnitude of the real part of the slowest pole or zero of the plant. Thus, we

have provided two different intuitive arguments for choosing an N that satisfies the above rule of
thumb.” To gain further insight into the choice of M and N, we present a simple example.

Example: Assume for this example that the true plant is known as follows.

giryeln] = b e T = b ph, for n > 0, where p =787, (6.6.27)
where a,b>0. So, :

Gie@ =bz/(z-p). (6.6.28)
Further, assume that u[n]=1, for all n, so that u;,,,=1. Using Eqgns. (6.6.19) and (C.11) from
Appendix C, we find that

Eyc=2 2 ibpl = 2bp/(1-p), (6.6.29)
i=1
which corresponds to a choice of M=1. We will compute, at =0, the frequency-domain error

bounding function given by Eqn. (6.6.20) assuming that the disturbance is zero. That is, using
Eqn. (6.6.29) and the periodicity of u[n],

EuosN"©) = (2bp/(1-p)2)/IUNPO). (6.6.30)
It can be shown that
IUNn(O)I =N, Vn, and (6.6.31)

Girye@®0T) = Grye() = b/ (1 - p). (6.6.32)
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So, Eqn. (6.6.30) can be rewritten as

EgetN0) = (2p/[N(1-p)1) Gyrye(D). (6.6.33)
Thus, by choosing N sufficiently large, we can make the relative error arbitrarily small. If we

choose N to be its bare minimum value of (os/a, we find that

N=2xr/@T) = 2x/-In(p). (6.6.34)
Assuming that p = 1, we can use the approximation -In(p) = (1-p) to show that

N=2x/(-p). (6.6.35)
Using Eqn. (6.6.35) in (6.6.33) and the fact that p = 1, yields

Ewcf’Nn(o) = (1/7) Gyrye(l) = 0.3 Gyryef(1). (6.6.36)

This additive error bound is relatively large, being on the order of 30% of Girue(D)-

Since the additive error in tHe above example was so large, we consider the effects of using
different values of N and M. First, we consider the simple case of increasing N. If we choose

N =10 og/a >> o /a, (6.6.37)
then

Ewcf’Nn(O) = (1/(10 7)) Gye(1) = 0.03 Gypyie(1), (6.6.38)
which is a much smaller additive error bound than Eqn. (6.6.36).

Now, we consider the effect of increasing M. For the example of Eqns. (6.6.27-28), we

choose to use a value of M that is greater than 1. In this case, using again Eqns. (6.6.19) and
(C.11) and the periodicity of u[n], we find

EpN™@y) =2 2, ibpl = 2bpM M -Mp+p)/(1-p)2, Vn, Voy. (6.6.39)
i=M

Following a development similar to that of Eqns. (6.6.30-36), we find that, if we choose N=w a
and p=1, then

EgN™(0) = (M (M- Mp +p) /1) Gerye(D). | (6.6.40)

So, by choosing M sufficiently large we can make the additive error arbitrarily small in this

example. We note that the choice of M that is dictated by the rule M=w/a, will guarantee that
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pM (M- M p + p) is small. For example, if aT=r/10, then M=0/a=20 and

MM-Mp+p)=e2F(20-19e™10y=0,011. (6.6.41)
So, using Eqn. (6.6.40),
EpNT0) = (0.011/7) Gyrye(1) = 0.004 Gyrye(D). (6.6.42)

In summary, we have shown how the choice of N and M affects the additive error at =0 for a

simple example. We have seen how an increase in either N or M will decrease the
frequency-domain additive error.

4 Frequency-domain Resolution

In this subsection, we will develop a rule of thumb for choosing the DFT length N based on
the required frequency-domain resolution of the robust estimator. That is, once the sampling

frequency g has been choscﬁ, the value of N specifies how many equally spaced frequency points

on the interval [0,00.] are used in the frequency-domain bounding methodology of Chapter 5. The

choice of N depends on how smooth, in the frequency domain, the plant dynamics are. We can
use the results of Subsection 5.7.3 to develop a rule of thumb for the choice of N based on
resolution requirements. Using Eqn. (5.7.29), we can bound the largest inter-sample variation of

18, (@°T, Bl from 15, €%, B)),

T A S
118, 81 - 18, (KT, )1 | < (g / N) Vg ey, 00,1,

for we [y, 1] (6.6.43)
where Vsu,in(mk’mk +1) is defined by Eqn. (5.7.31) which we rewrite here,
Vui @@y = sup | Vsun(eJ“’T) ). (6.6.44)

e (o, 41]

Thus, if we want to bound the maximum inter-sample variation, we must bound

(@y/N) Vo 2T, Vo, (6.6.45)
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where Vsun(e,j (oT) depends on the on-line computed value of Asun(ejmT) as was developed in

Subsection 5.7.2. Now, in the following rule, we want a precomputable bound on the derivative,

so we choose to use the worst-case bounding function V ej(oT) that is based only on a priori

su,wc(
information as shown in Subsection 5.7.1.
el®T g

RULE OF THUMB 2: Choose N large enough so that (@g /N) Vg el

sufficiently small for all . (6.6.46)
The meaning of "sufficiently small" depends on how large an inter-sample variation is acceptable.
6.6.5 Conclusions on the Choice of the DFT Length for the F ncy-domain Estimator

We now summarize our results concerning the choice of N. The rules of thumb 1 and 2,
corresponding to Eqns. (6.6.25) and (6.6.46), respectively, provide lower bounds on the choice of
N. Rule of thumb 1 is chosen so that we can accurately identify very low-frequency dynamics and
rule of thumb 2 is chosen so that the inter-sample variation of our continuous bounding function on
the unstructured uncertainty, is acceptably small. The disadvantage of choosing N or, for that
matter, M to be very large is that the number of computations can become prohibitively large. The
severity of this computational limit depends on the state of the art in high-speed computing,
Computational issues are discussed further in the following section.

6.7 Computational Issues

In this section, we will discuss the computational requirements of the robust estimator.
Specifically, we will focus on the main computational bottle-necks in the on-line implementation of
the robust estimator. The robust estimator requires considerable design time as well as extensive
off-line and on-line calculations. Itis the goal of this section to provide an idea of the size of the
on-line calculations that are required by the robust estimator.

The main computational burden of the robust estimator is due to the extensive calculations of
the frequency-domain bounding method. The chief computational culprit is Eqn. (5.2.4), which
we repeat here for convenience,
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M-1
ENt@p) = X |gtmc[p]| IUNPP(@) - UN@y)! + Epepy fork =0, .., N-1. (6.7.1)
p=1

where the remainder term Erém can be computed off-line using Eqn. (5.2.5). In the
frequency-domain bounding method of Chapter 5, the bounding function of Eqn. (6.7.1) must be

computed at every sample time. For a given frequency wy, we compute Eqn. (6.7.1) using our a

priori bounding function on |gy,[n]l and our on-line computed values of the input signal DFT,

UNm(o)k), for m = n-(M-1), n-(M-1)+1, . ., n. Due to the DFT symmetry properties of

real-valued signals, we only need to compute Eqn. (6.7.1) fork =0, .., N/2. In summary, at
every sample time, we must compute a sum of M-1 terms at (N/2)+1 frequencies. So, in Eqn.
(6.7.1) we must perform approximately M+(N/2) subtractions, multiplications and additions, at
every sample time. Thus, we see that

Number of On-line Computations per Sample Time = M+ (N/2) < M+ N. (6.7.2)
This equation reveals how extensive the computational requirements of the robust estimator can
become for large values of M and N. However, an important feature of Eqn. (6.7.1) is that it can
be computed simultaneously, that is, in parallel, at the (N/2)+1 frequency points. This will allow
vast increases in the computation speed of Eqn. (6.7.1). For a parallel implementation of Eqn.
(6.7.1), the computation time will only increase in proportion to the memory length M. In
Chapters 8 and 9, we will consider two simulation examples. We include the following table to
give an idea of how many calculations are required in these examples for Eqn. (6.7.1).

Table 6.3: Number of On-line Computations for Eqn. (6.7.1).

Number of Multiplications, Subtractions

Example I M | N | and Additions per Sample Time
Chapter 8. Eqn. (8.12) | 10 | 50 | 250
_Chapter 9, Eqn. (9.2.4) | 200 | 1000 | 100.000

This table illustrates just how different the computational requirements of the frequency-domain
bounding method can be for different examples. The example of Chapter 8 has fast discrete-time
poles that require only a small value of the memory length M. In addition, the Chapter 8 example
has no sharp frequency-domain peaks, so frequency-domain resolution isn't a problem and a small
value of N can be used. This simple first-order example is one of the least computationally
demanding examples that we could have presented. On the other hand, the example of

Chapter 9 is one of the most computationally demanding examples that we could have presented.
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The Chapter 9 example potentially has very slow discrete-time poles so the memory length M must
be chosen to be large. In addition, the second-order example of Chapter 9 has a potentially sharp
frequency-domain peak that requires a large choice of N for frequency-domain resolution, These
examples serve as benchmarks for the computational requirements of the frequency-domain
bounding method.

As a modification to the basic methodology of Chapter 5, the bounding function of Eqn.
(6.7.1) could be computed less frequently than every sample time. This would result in a reduction
of real-time computing requirements at the cost of a more conservative bounding function. That is,
if we only computed the frequency-domain bounding function of Eqn. (6.7.1), say every five
sample times, then we would learn less than if we computed it every sample time.

The computation of Eqn. (6.7.1) represents, by far, the majority of the computational burden
of the robust estimator. The on-line calculations that are required by the time-domain parameter
estimator of Chapter 4 are quite small compared to the on-line calculations of Eqn. (6.7.1). The
one other part of the robust estimator that requires significant computations is the frequency-domain
parameter estimator of Section 5.4. This estimator requires the computation of a weighted
least-squares fit at (N/2)+1 frequency points. This computation does not represent a bottle-neck for
the real-time implementation of the robust estimator since this least-squares fit is computed only
infrequently, at the times that the control-law is updated. Thus, even if the computation requires
several sample times to perform, it will not greatly affect the performance of the adaptive control
system. ‘

In summary, we have seen that the frequency-domain bounding computation of Eqn.

(6.7.1), which is the same as Eqn. (5.2.4), is the primary limitation for the real-time
implementation of the robust estimator. The examples of this section have provided an idea of just
how large the computational requirements of the robust estimator are. In the author's opinion, the
robust estimator requires a prohibitively large amount of computation by today's standards. The
simulations of Chapters 8 and 9 had to be performed on a Cyber 205 supercomputer. It is hoped
that future advances in computer technology will remove this computational barrier to using the
robust estimator. What may seem computationally impractical today often becomes practical with
such computing advances.

6.8 Conclusion

In this chapter, we have discussed design issues and the specification of the assumed bounds
for the robust estimator. In Section 6.5, we examined the tradeoffs involved in the choice of the

DFT length N; that is used in the robustified time-domain parameter estimator. Further, in Section
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6.6, we discussed the lower bounds on the choice of the DFT length N¢ that is used in the
frequency-domain bounding method. We will later see in the simulation chapters that Ny will, in
general, be chosen to be smaller than the frequency-domain DFT length Nf. In the robustified
time-domain parameter estimator, the bounding mechanism, which uses N;-point DFTs, needs to

track the error signal that it is bounding. This objective results in a relatively small choice of N;.
However, in the frequency-domain bounding methodology we find that there are many reasons to
choose the DFT length N¢ large. So, if we choose to use the time-domain parameter estimator in
combination with the frequency-domain bounding method, then we are forced to compute two

different DFTs on-line, one that has N, points and one that has Ny points.
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CHAPTER 7.
A SIMPLE ROBUST ADAPTIVE CONTROLLER

7.1 Introduction

The purpose of this chapter is to tie together the results of the previous chapters. So far, we
have presented two methods for generating parameter estimates and, hence, a nominal model, and
one method for finding a frequency-domain uncertainty bounding function. Further, we have
investigated some of the design choices associated with these parameter estimators and the
bounding method. In this chapter we will illustrate, through an example, how the robust estimator
would be used in a robust adaptive control system. In addition, we discuss the design of a strategy
for adding probing signals to the closed-loop control system to enhance identification. The chapter
is organized as follows.

In Section 7.2, we present some stability-robustness results for discrete-time systems.
These results are then used in Section 7.3 to develop a simple control-law update algorithm that
incorporates an on-line stability-robustness test. The results of Section 7.3 represent a complete
robust adaptive controller for a limited class of plants. In Section 7.4, the use of probing signals is
discussed. While there are many possible choices for a probing signal, the development of the
frequency-domain bounding method gives insight as to what kinds of probing signals will result in
improved closed-loop performance, that is, increased bandwidth. The key contributions of this
chapter are the development of a robust control-law update algorithm for a limited class of plants,
and the investigation of what probing signal strategies should be used with the robust estimator.

7.2 Stability Robustness Issues

In this section, we will develop tools that can be used to conclude that a discrete-time
closed-loop system is robustly stable. Further, we will examine the implications of discrete-time
stability robustness for the sampled-data system with the continuous-time plant. Specifically, the
possibility of hidden oscillations occurring between the time samples of a sampled-data system will
be examined.

7.2.1 Discrete-time Stability-Robustness Tests

In this subsection, we will use the results of Appendix F and the bounding function of
Chapter 5, to find conditions under which the SISO discrete-time, closed-loop system of Figure
3.3 is robustly stable. From Figure 3.3 and Eqn. (3.7.1), we find that our nominal loop gain is



Chapter 7 Page 148

T(2) = G(z, 6) K(2). 7.2.1)
Further, we find our perturbed loop gain,

T(z) = Gyrye(2) K@) = G(z,8) [1 + 8, (z, )] K(z) = T(2) [1 + 8 (z,6)]. (7.2.2)
We assume that we have a bounding function Asu(ej(”T, é) on ISSu(ejmT, é)l for all ®. Then,

using the definitions of T(z) and 'ff(z) given by Eqns. (7.2.1) and (7.2.2), respectively, we can
state the following theorem.

Theorem 7.1: The closed-loop system f(z) /(1 + T(z)) has all its poles in the open unit disk if:

1) Assumption AD1.5 of Chapter 3 holds, that is, Gye(2) and G(z,eo) have all their poles

in the open unit disk, for all 6, € 0.

2) K(z) has all its poles in the open unit disk.
3) The nominal closed-loop system, T(z) / (1 + T(z)), has all its poles in the open unit disk.

4) a) 11+ T4Ty > A (19T, 6), Vo, or equivalently, (7.2.3)

) mE@9T) 1+ TET) < 1/44,9T,8), Ve (7.2.4)

Proof: The proof is an application of the results of Appendix F. Conditions 1 and 2 of the above
theorem ensure that conditions 1a and 2 of Theorem F.3 are fulfilled. The stability of the nominal
closed-loop system, that is, condition 3 from above, implies that condition 1b of Theorem F.3 is
satisfied. Theorem 7.1 follows directly from Theorem F.3 of Appendix F.

Q.E.D.

7.2.2 Implications for Continuous-time

Although the results of the previous subsection enable us to prove asymptotic stability of the
discrete-time closed-loop system, we are actually interested in the stability of the underlying
sampled-data system with the continuous-time plant. That is, the analysis of the discrete-time
system will tell us what is happening at the sampling instants. However, it will not tell us about the
continuous-time plant output between these sampling instants. A phenomenon known as "hidden
oscillations" or "intersample ripple” can occur, where the continuous-time plant output may
oscillate even though the plant output at the sampling times does not. Astrom and Wittenmark
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[31, p.116] provide a discussion of this problem. The following is adapted from their text.
They distinguish two cases of the hidden oscillations problem.

Case 1: Open or closed-loop systems, where there is an oscillation in the continuous-time output
which cannot be seen in the control signal.

Case 2: Oscillations between the sampling points caused by an oscillation in the control signal.

The first case is due to the fact that for certain values of the sampling period, the discrete-time plant
model may have a pole-zero cancellation. If this is the case, then some of the continuous-time
open-loop plant modes will not be observable in the discrete-time plant output. A change in the
sampling period will solve this problem of unobservability. The second case of hidden oscillations
occurs when there are poorly damped plant zeros that are cancelled by the compensator. Astrom
and Wittenmark summarize by saying that there are no hidden oscillations, if the unobservable
open-loop plant modes are not oscillatory and if unstable or poorly damped plant zeros are not
cancelled by the compensator.

7.3 A Simple Control-law Update Algorithm

In this section, we will present a simple control-law update algorithm that can be used in
conjunction with the robust estimator to form a complete robust adaptive control system. The main
purpose of this section is to illustrate how the robust estimator can be used in a closed-loop
adaptive controller. The control-law update algorithm only works for a limited class of plants and
is not recommended as a general case algorithm. However, because of its simple form we will be
able to automate the update algorithm and, thus, later in Chapter 9, we will be able to perform an
illustrative simulation.

7.3.1 Control-law Development

A simple pole-zero cancellation control-law will be developed. Our compensator will be
formed by inverting the nominal model and substituting a discrete-time integrator. We will assume
that the nominal model is stably invertible for all admissible parameter estimates and that the relative
degree of the nominal model is one. We use only the information yielded by the robust estimator in
our formulation of the robust control-law update algorithm. We state our simple algorithm in the
form of a theorem.
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Theorem 7.2: If Gyrye(2) = Gz, 8) [1 + 8, (z,6)] and (7.3.1)

1) Gyye(2) has all its poles in the open unit disk,

2) G(z, é) is of relative degree one or less, and has all its poles in the open unit disk for all

Be o,
3) 18,,@T, 0) < A, ©1°T,8), Vo, (7.3.2)
where A (el0,8) < 1. . (133)
4K(z,0)=Gl(z,0) c/ z- (1)) (73.4)
where c=1 [-(1/x)+ V(1/x)2+4/x 1/2, ifx>0 (7.3.5)
1,ifx<0 '
and  x= sup ([Ag@PT,82-11/[2(1-cos(@T))]} +&,, (7.3.6)
we (0,%/T]

where €, and &, are infinitesimally small positive constants.

Then, the closed-loop systém Gyrye(2) K(z,8) / (1 + Gyrye (@) K(z, 6)) has all its poles in the open
unit disk.

Remark 1: The constants €, and &, are included in the above theorem only to satisfy some technical

conditions in the proof. In particular, the presence of €; means that K(z) has no poles on the unit

circle, thus allowing us to use Theorem 7.1.

Remark 2; In condition 2 of the above theorem, the nominal model is assumed to have a relative
degree of one or less so that the compensator will be proper.

Proof: Rewriting Eqns. (7.2.1-2) and using Eqns. (7.3.1) and (7.3.4) we find that
T(2)=G(z,0) Kz,6) =c/(z- 1 +€) (7.3.7)

T@ = Gyye@ K(z.6) = T@) [1 + 8 (z,8)] = (c/ (z- 1 + él) )[1+8,z0).  (7.3.8)

Thus, with reference to 4a of Theorem 7.1, and considering the symmetry and periodicity of Agy
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we must show that

/9T §), for all w e [0,7/T]. (7.3.9)

1+ @ 14e)/cl > Ay

Now, to simplify the proof, we let €, —0 and derive the limiting form of the inequality of Eqgn.

(7.3.9). So, we must show that our control law satisfies

11+ (cos(@T) + sin(@T) - 1) /¢l > A (el®T,8), forall @ e [0,m/T], (7.3.10)

or

[1 + (cos(@T) - 1) /2 + (sin(wT) /)2 > Ay (eI®T,8)2, forallwe [0,/T],  (7.3.11)

or
2 (1- cos(@T)) (1 -¢) /e > A, @I, 8)2- 1, forall we [0,n/T]. (7.3.12)
For w=0, we find that Eqn. (7.3.12) becomes
1> a,,69,8?2 (7.3.13)
regardless of the value of c. The assumption of Eqn. (7.3.3) satisfies the requirement of Eqn.

(7.3.13). Next, we consider the requirement of Eqn. (7.3.12) for @=0. Since

1 - cos(wT) > 0, for e (0,7/T]. (7.3.14)
we can use Eqn. (7.3.12) to see that our requirement has become

(1-0)/? > [Ag,@°T,6)2-11/[2 (1 - cos(@T)) ], forall e (0,m/T], (7.3.15)

or, using the definition of Eqn. (7.3.6), we must show that

(1-0)/c? 2 x > [A,@T,82-1)/[2(1-cos(@T) ], forall o e O/T].  (73.16)
Now, if

x=(1-¢)/c?, (7.3.17)
then

xc2+c-1=0, (7.3.18)
and, using the quadratic equation, we find that the two possible values of ¢ are given by

c=[-(1/x)x Va/x2+4/x 1/2. | (7.3.19)

Eqn. (7.3.5) corresponds to the choice of the '+' sign in Eqn. (7.3.19). If x <0, then Eqn.
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(7.3.5) would yield a ¢ > 1; however, we constraint ¢ to be unity in this case; otherwise, the
closed-loop nominal system will have a negative real pole.

So far we have shown that, if conditions 3-4 of the theorem are satisfied, then condition 4a
of Theorem 7.1 is satisfied. We still need to prove nominal stability. The nominal closed-loop
system is given by

T1(z) = G(z,0)K(z,6)/ (1+G(z,8) K(z,0)) = c/(z-1+c+g)) (7.3.20)

whose pole is l-c-el. From Eqn. (7.3.5) we conclude that 0 < ¢ < 1. Thus, the pole of the
nominal closed-loop system is in the open unit disk since
-1<-el_<_1-c-el<1-el<1. (7.3.21)

Hence, we have shown that condition 3 of Theorem 7.1 is fulfilled. Finally, we see that conditions
1, 2 and 4 of Theorem 7.2 satisfy conditions 1 and 2 of Theorem 7.1. By application of Theorem
7.1 we have proven Theorem 7.2.

Q.E.D.

Remark 3: Theorem 7.2 is not easily extended to cases where the plant has a relative degree that is
greater than unity. For the higher relative degree cases it is not possible to decompose the
stability-robustness requirement into an inequality of the form of Eqn. (7.3.15) where one side
depends only on the compensator gain ¢ and the other side depends only on the uncertainty
bounding function and frequency. '

Remark 4: In the control-law update algorithm of Theorem 7.2, the compensator gain ¢ can

potentially become unity if the uncertainty bounding function Asun(ejka, 6) becomes less than

unity for all .. If the gain ¢ becomes unity, then, ignoring the infinitesimally small constant ,,

the nominal closed-loop transfer function becomes

Ty(@ = c¢/(z-1+c). (7.3.22)
So, for c=1, ’
Ty@ = z7L. (7.3.23)

Thus, the algorithm of Theorem 7.2 can potentially yield a deadbeat system. To avoid this, the
update algorithm can be modified to not allow the compensator gain to exceed some target gain

¢; < 1. Inthis case, the pole of the nominal closed-loop system will never become faster than 1-c;,

and the system will be more robust than in the deadbeat case.
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7.3.2 Stability Robustness Tests using Discrete Frequency Points

In this brief subsection, we will address the problem of applying Theorem 7.2 when we have

a discrete function of frequency, Asun(ejka, 0) fork=0, . ., (N/2), instead of a continuous one.

This problem was addressed in Section 5.8 where we added a safety factor to the uncertainty
bounding function to account for possible inter-sample variations between discrete frequency
points. Theorem 7.2 must be modified slightly to account for the use of the discrete uncertainty

. bounding function. That is, in Theorem 7.2, Eqn. (7.3.6) can be replaced, at a given time index n,
by

x=  max  {[Ag"@%T,8)2-11/[2(1 - cos(w,T) 1} +e,, (7.3.24)
k=1,..,(N/2)

where Ksun(e,i“’k'r, 8) is the final uncertainty bounding function including the safety factor, which

was developed in Section 5.8, and where again €, >0 can be made arbitrarily small.

7.4 Probing Signals and Closed-loop Operation

4.11In

In this section, we will discuss the addition of probing signals to enhance identification of the
plant in a closed-loop adaptive system. Up to this point in the thesis we have taken a passive
attitude with respect to the role of the robust estimator. The robust estimator updates its estimated
frequency-domain model when the input signal is rich in some frequency range. However, when
the plant input signal is not rich enough to improve on the estimated model, then the robust
estimator doesn't update its estimates and, consequently, the control-law is not updated. If we
want to enhance identification, that is, enable our robust estimator to learn, we can add a probing
signal in the closed-loop. This probing signal will degrade the command-following performance of
our closed-loop control system; however, the increased knowledge of the plant will result in better
command-following in a later period, provided that the plant remains time-invariant. This trade-off
between identification goals and closed-loop performance goals has been studied in the stochastic
adaptive control literature as the "dual-control” problem [35], [6]. We do not pursue this stochastic
approach but will instead discuss different characteristics of the probing signal that will enable the
robust estimator to provide performance-improving information to the control-law update
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algorithm. The goal of this section is to show how the robust adaptive control framework of
Chapter 3 and the characteristics of the robust estimator impact the choice of a probing signal.

Consider the block diagram of Figure 7.1, which is the same as Figure 3.3 except that we
have added the probing signal v[n] at the plant input. There are many possible strategies for
choosing a probing signal to enhance identification. The following information can influence our
choice of a probing signal:

1) the frequency range of the largest plant uncertainty,

2) the desired bandwidth of the closed-loop system,

3) knowledge of the spectrum of the additive output disturbance d[n],
4) knowledge of the spectrum of the reference signal r[n],

5) the desired speed of the identification procedure.

In addition to the above list, we can also use information that is gathered on-line to help determine
our choice of probing signal. Since we compute the DFT of the input signal u[n] on-line, we could
keep track of the spectrum of u[n] to see if we needed a probing signal. In the following
subsections, we will use assumptions AD1-3 of Section 3.5 (i.e. 1 and 3 above) and an assumed
target closed-loop bandwidth, in our development of a strategy for generating a probing signal. We
do not assume that we know the spectrum of the reference signal ahead of time.

The rest of the section is organized as follows. In Subsection 7.4.2, we discuss questions of
when to introduce probing signals and when to removed them. In Subsection 7.4.3, we will
present a specific probing signal strategy that can be used with the simple adaptive control-law
update algorithm of Section 7.3. This strategy will later be used in the simulations of the thesis.
Since there are potentially many different probing signal strategies, we devote Subsection 7.4.4 to a
general discussion of the characteristics of several different strategies.
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Probing Signal Disturbance

vin] dln]
Discrete-time
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+ ;; + +

Figure 7.1: Closed-loop Discrete-time System with Probing Signal.
7.4.2 Starting and Stopping Criteria for Probing Signal Strategies

In this subsection, we examine criteria for adding or removing probing signals. In Figure
7.1, if the plant input signal u[n], which at this point is due primarily to the reference signal r[n], is
rich enough, then the adaptive control system will yield successively higher bandwidth systems.
Unfortunately, this will rarely be the case, so another source of excitation must be introduced. That
is, if the adaptive control system doesn't push the bandwidth out on its own, based on the signals
due to r{n], the designer may mandate that a probing signal be introduced. It's not clear that one
wants to introduce a probing signal in all cases, since the probing signal will disturb the system.
However, if the designer determines that he wants some closed-loop bandwidth to be attained in
some finite amount of time, then such a signal may be required. Several questions arise in this
situation. For example, what criteria should be used to detect when the adaptive control system is
not pushing the bandwidth out, and what criteria should be used to stop the addition of the probing
signal? We will now address these questions.

Probing Signal Starting Condition
To detect the need for a probing signal, the time progress of the adaptive control system
needs to be monitored. We could check the richness of the plant control signal that is due
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primarily, at this point, to the reference signal. However, in some situations, it makes more sense
to check the progress of the adaptive control system as measured by its ability to increase the
closed-loop bandwidth. If we could some how quantify the closed-loop bandwidth in terms of
information that is available on-line, then we could perform this check. So, intuitively, we could
check the average time rate of change of the closed-loop bandwidth and decide to "turn-on" the
probing signal if this rate were not fast enough.

Probing Signal Stoppin ndition

An obvious choice for the stopping condition for the probing signal is the attainment of the
target closed-loop bandwidth. Of course, this again assumes that we could somehow quantify the
closed-loop bandwidth in terms of information that is available on-line.

As an extension to the results of this thesis, in Subsection 10.2.4, we discuss the
modification of the robust estimator to handle slowly time-varying plants. In a situation where the
plant is slowly time-varying, the uncertainty bounding function can actually become larger if no
rich signals are present in the system for a period of time. Thus, the attainment of the target
closed-loop bandwidth, at one point in time, isn't the end of the story; rather, the current bandwidth
must continually be monitored to see if it falls below its target value. That is, for the slowly
time-varying case, we keep checking if the target closed-loop bandwidth is achieved and if it isn't,
we introduce the required probing signal. As a final note to this subsection, we point out that there
are some problems where the nominal closed-loop bandwidth, or some approximatién thereof, is
available in the form of the compensator parameters and the estimated plant parameters. For
example, in the simple control-law of Section 7.3, the single discrete-time pole of the nominal
closed-loop system can be expressed in terms of the known compensator gain c.

743 A cific Strate

In this subsection, we present a strategy for adding a probing signal to enhance identification
and hence operation of the robust estimator. We again assume that the probing signal v[n] is added
at the plant input as shown in Figure 7.1. Further, we assume that the control-law update

algorithm of Section 7.3 is being used and that some target discrete-time pole p.] has been chosen

for the nominal closed-loop system. First, we find out how large that the DFT of the input signal
must be to reduce our uncertainty enough to achieve the target closed-loop bandwidth. Then, we
use this input signal DFT to compute the DFT magnitude of the probing signal. Our procedure will
be to make several assumptions so that we can come up with some idea of what the spectrum of the
probing signal should be. Of course, the validity of our results will depend on the validity of our
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assumptions, some of which will not be valid in all cases. First, we assume that the input signal is
periodic with period N, so that

UNn'P((ok) = UN"(oy), Vo, (7.4.1)
and using Eqn. (5.2.4) we find that

EN"(@,) = Ererp VO (7.4.2)
Now, from Eqn. (5.2.17) and (7.4.2) we know that forn > N-1,

E¢ N (@) = ( Eren + DN(®@) ) / U@, Ve, (7.4.3)
We also assume that '

Geumt N"(@) = Gk, 8), and (7.4.4)

Ecumf,N" (@) = EgN"(@y), Vo (7.4.5)
So, using Eqns. (5.5.6) and (7.4.4-5) we find that

A, "@KT, 8) = Eg \wp) /1GEOT, Bl (46
which, combined with Eqn. (7.4.3), yields

AT, 8) = (Epemy + Do) ) / (Ul IGEKT, B)1 ), Voo, (7.4.7)
Rearranging yields

IUNM@! = (Erepy + D@0 ) / ( Ag, ek T, §) IGIKT, B)1), Voo, (7.4.8)

From Section 7.3, we know that we want
A MET,8) < 19T - 1) /cyg + 11, Vay, (7.4.9)

where ¢, is the compensator gain corresponding to the target closed-loop bandwidth. That is,
using the compensator of Theorem 7.2 yields a nominal closed-loop system with a single
discrete-time pole at 1-c. Thus, if the target discrete-time pole is Ptc] for the nominal closed-loop
system, then

Ccl = 1 - Prel- (7.4.10)
Combining Eqns. (7.4.8-9) yields the requirement that

UN@)! > (Egery + Dn(@)) / (@K - 1) /¢ + 111GEKT, B)1), Yoo (7.4.11)

This equation gives us an idea of what the desired spectrum of the input signal should be so as to
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achieve the closed-loop discrete-time pole p;;j. However, what we are really interested in is the

desired spectrum of the probing signal.
The transfer function from v{n] to u[n] is given by the sensitivity transfer function,

U@/ V(@) =1/(1+Gue(2) Kz, 8)). (7.4.12)

Thus, if we desire the plant input signal to have some spectrum, we must consider the disturbance
rejection properties of the loop when we choose the probing signal v[n]. From Eqn. (7.4.12) we

conclude that, to yield an input signal with a DTFT of U(eij), we must use a probing signal v[n]
with a DTFT of V(&}°T) where

VEIPT) = [1 + Gy @D K@?T, )] UE®T), Vo (7.4.13)

From the results of Chapter 2, we know that for sufficiently large N

V) = [1+ Gy @k D) K@KT, )] Un(@y), Yooy (7.4.14)

Combining Eqns. (7.4.11) and (7.4.14) we find that, to achieve our target closed-loop bandwidth,
we want to choose the probing signal such that

VM@ = 11+ Gy (@1 kT) K@KT, O)1 «

(Erem + DN@)) / (IEPKT - 1) /¢y + 111G(@IPkT, B)1 ), Voo, (7.4.15)
Since we do not know Ginje(2), we use Eqn. (7.3.8) to find
Girge @k K(@9%T,8) = e/ @%T - 1] [1 + 3T, 8)), Vo, (7.4.16)
where we have set €,=0 here. Using the triangle inéquality, we write
11+ Gy @Ok K(eIPkT, 0)1 < 1+ [c/16I%T - 11111 + Ay (I%T, )], Voo
(7.4.17)
where we have again used the fact that Ksu is a bounding function on 18 . Now, in addition to
not knowing Gyyy,¢(2), we do not know the true parameter vector ;. That is, while we do know

the current parameter vector estimate 0, we really want to use the probing signal that will excite the

plant well enough to identify the true plant with parameter vector 00. To make sure that the probing

signal has a large enough spectrum at all frequencies, we choose to use the smallest possible
nominal model at all frequencies in Eqn. (7.4.15). Now, we can rewrite Eqn. (7.4.15) using this
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smallest nominal model and Eqn. (7.4.17).

VN @l = (1+ [c/180%%T - 111+ A, &2%T,8)]) -

(Erem *+ DN(@) )/ (@T - 1)/ ¢y + 11 inf (IGEKT,0)} ), V. (7.4.18)
6e®
In the above equation, the infimum can be computed off-line. Eqn. (7.4.18) is only computed
infrequently, for example, the probing signal might only be updated every N sample times. At
these probing signal update times, we use the current compensator gain ¢, which is updated by the

control-law update algorithm, and the current uncertainty bounding function Zsu’ which is updated

by the robust estimator, in order to compute the effect of the current disturbance rejection properties
of the closed-loop. In summary, we have computed an approximate expression for the DFT of the
probing signal that will yield enough information for the robust estimator to allow the robust
control-law update algorithm of Theorem 7.2 to yield a nominal closed-loop system with a
discrete-time pole at py ).

As a final problem, we must find a time-domain signal that has the DFT magnitude of Eqn.

(7.4.18). Here we will work with VN(o)k), the unshifted version of the DFT of v[n]. The inverse

DFT of VN(®y) is given by
N-1
vl = 1 2, V(o) Wykn for n=0,...,N-1. (7.4.19)
N k=0

One way to compute a time-domain signal with DFT magnitude IVN(oy)l s the following
N/2

2 V@l sin(2xkn/N), for n=0,...,N-1. (7.4.20)

Vl[n] =1
N k=0

In Eqn. (7.4.20), we only use sinusoids with frequencies up to =0, /2)=(0)S/2), since

symmetry properties give us information for the frequencies from O[(N/2)+1] t© O(N-1) When

there are many terms IVN(@y)! that make significant contributions in the sum of Eqn. (7.4.20), we

find that the time-domain signal v,[n] tends to have peaks, at some time indices, that are much

larger than the standard deviation of the signal from its zero average. This occurs at the time
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indices where many of the sinusoids add-up. These large time-domain peaks are undesirable so we
seek another method for finding a time-domain version of the probing signal. In the second
method, which we describe below, we form a time-domain signal by assigning a random phase to

the DFT mégnitudc V(o) for each k, and then computing the inverse DFT. So, for method 2

we find the probing signal v,[n] as follows,

N2
Vo[n] = 1 2 V(! [ 3 cos(2 Tk n/N)+bgsin(2rkn/N)]J, (7.4.21)
N k=0 .
for n=0,...,N-1

where

ay = cos(Py) (7.4.22)

by = sin(¢y) (7.4.23)
SO

Va2+ b2 =1 (1.4.24)

and where Py is a random variable that is uniformly distributed on the interval [0,27] for each k.

The probing signal v,[n] of Eqn. (7.4.21) does not have the troublesome peaks of v, [n] of Eqn.

(7.4.20). We note that v,[n] is effectively the same as passing a white noise signal through a filter

with magnitude IVN(O)k)I.

We now present a final modification to the probing signal strategy that we have been
developing. Since we know what target closed-loop bandwidth we want, we know how small the

cumulative frequency-domain error Ecumf,Nn(‘”k) must become for the worst-case, smallest

magnitude nominal model to have a sufficiently small multiplicative uncertainty bounding function.
That is, using Eqns. (7.4.5-6) we find

IGEIOKT, 8)1 A, "(©IKT, 8) = Ecyms N (@), V. (7.4.25)

Now, using the requirement of Eqn. (7.4.9) we find that, if

Eeumt NY©@) = 1@9%T - 1)/ i1 + 11( inf (IGEIKT,0)1} ), (7.4.26)
0e©
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for all @, then the target closed-loop bandwidth can be attained for all possible nominal models.

This realization suggests the straightforward modification for our probing signal strategy.

MODIFICATION: I, at time index n, Eqn. (7.4.26) is satisfied for a given frequency O,

then the corresponding magnitude coefficient IVy(ey)! should be set to zero in the

time-domain expression for the probing signal.

In this way, we stop unnecessarily exciting the plant at the frequency o, since we have already

gathered sufficient information at this frequency.
4.4 Oth ing Si

In this subsection, we provide a more general discussion of probing signal strategies for use
with the robust estimator. In the previous section, we saw how the disturbance rejection properties
of the closed-loop system affect our choice of a probing signal. Consider a situation where we are
using the robust estimator in combination with the control-law of Section 7.3 and the probing
signal strategy of Subsection 7.4.3. In this case, we expect the bandwidth of the nominal
closed-loop system to increase over time. Initially, the plant estimate will be poor so the
compensator gain ¢ will be small to guard against the large modeling uncertainty. Thus, initially the
probing signal, which acts as an input disturbance to the plant, will not be rejected by the loop and
we will have, roughly speaking, an open-loop identification problem with the probing signal
providing most of the plant input signal. In this case, the probing signal need not be large.
Needless to say, initially the closed-loop system will have very poor command-following
properties because of the low loop gain. Now, as the robust estimator identifies the plant,
successively larger values of the compensator gain can be used as the plant uncertainty is
decreased. However, a larger compensator gain will result in improved disturbance rejection
properties of the closed-loop system. So, as the closed-loop bandwidth increases, we must use
successively larger probing signals to gain any new information. That is, the better that we
identify, the harder it is to gain any additional information. In practice, what can occur is that the
target closed-loop bandwidth can be almost achieved, so that the loop does a good job of rejecting
the probing signal. In this case, the probing signal must be very large if we want to actually
achieve the target closed-loop bandwidth.

It is stressed again that there are as many probing signal strategies as there are different
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adaptive control problems. The choice of a strategy depends on what is known and what the
relative importance of different objectives is in a given problem. In this thesis we do not provide a
comprehensive treatment of this issue of probing signals. However, since the characteristics of the
robust estimator affect the choice of a probing signal strategy, we will discuss several illustrative
strategies and point out the different characteristics of each. In each case, we are interested in
generating a probing signal that will allow the robust adaptive control system to increase the
nominal closed-loop bandwidth to some target value. In the following discussion, we ignore any
contribution of the reference signal to the plant input signal and instead compute the spectrum of the
probing signal that is required as if it were the only excitation in the system. Thus, we take the
viewpoint that, when the probing signal starting condition of Subsection 7.4.2 is true, we introduce
a probing signal that we know will do the job until we reach the target closed-loop bandwidth.
Again, the problem is that, during the period of time that the probing signal is present, it is
disturbing the system. We do not treat this tradeoff rigorously but incorporate it into our arguments
as the reason for wanting to use a small time-domain probing signal.

Strategy 1: (Strategy of Subsection 7.4.3)

Description: We compute the required spectrum at the plant input assuming that the plant is
the smallest magnitude nominal plant. Then, we use our knowledge of the current disturbance
rejection properties of the closed-loop system to compute the required spectrum of the probing
signal. The final time-domain version of the probing signal is generated using a sum of all of the
required sinusoids. | ,

Characteristics; The above strategy results is a relatively fast adaptation time. In principle,
if the assumptions made in the probing signal development of Section 7.4.3 are fulfilled, this
strategy can result in the attainment of the target closed-loop bandwidth in roughly the time length
of the N-point DFT. However, the time-domain probing signal can be quite large since it is the
sum of many sinusoids. In addition, the use of the worst-case, smallest magnitude nominal plant
in the computation of the required spectrum means that the probing signal spectrum may be larger
than that required for the identification of the true plant. That is, if the true nominal plant rolls-off
at a much higher frequency than the assumed worst-case nominal plant, then the probing signal that
is computed using this strategy will have an unneccessarily large magnitude in the frequency range
between the two different roll-off frequencies.

Strategy 2: _
Description: Same as Strategy 1 except that the final time-domain version of the probing
signal is generated by using successive N-point time sequences of each of the required sinusoids
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alone. That is, given the desired spectrum magnitude IVN(oy)l, we generate the probing signal as

follows.

v[n] = J IVN(@g)l, forn=0,..,N-1
IVn(oIsin(2en/N), forn=N,..,2N-1

V(oI sin(2tkn/N), forn=keN, .., (k+1)N- 1 (7.4.27)

IVN(CD(N/z))I sin(®n), forn=(N/2)*N, .., (N/2+1)N- 1

where N is the DFT length. In this way, we do not have to use a large time-domain probing signal
and we are only disturbing the system at one frequency at a time.

Characteristics: The above strategy results is an extremely long adaptation time and is
presented only to make a point. There is a tradeoff between the size of the time-domain probing
signal and the speed of adaptation (identification). In Strategy 1, the time-domain probing signal is
large; however, the target closed-loop bandwidth is achieved in about N sample times. In Strategy
2, the time-domain probing signal is much smaller (potentially only 1/N as big as Strategy 1);
however, the target closed-loop bandwidth is not achieved until about (N/2)*N time samples.

Strategy 3:

Description; Same as Strategy 1 except that we use a stage-by-stage learning process with
regard to which nominal plant model we use in our computation of the required probing signal
spectrum. We are trying to avoid the problem that was described in Strategy 1 concerning the use
of the worst-case, smallest magnitude nominal plant. A heuristic approach could be used where we
first introduce a probing signal that would result in the achievement of the target closed-loop
bandwidth for, say, the largest magnitude nominal plant that we may have. If the probing signal
was not rich enough for the adaptive control system to achieve the target closed-loop bandwidth
during the first N time samples, then the probing signal would be increased under the assumption
that the nominal plant model was somewhat smaller. This process could be carried out in stages
over each N time sample period until the required probing signal was reached.

Characteristics: This strategy will result in performance that is similar, but slower than
Strategy 1. Stategy 3 requires several N time sample length intervals, depending upon the size of
the gradations by which the probing signal is increased at each stage. The advantage is that
Strategy 3 requires a smaller probing signal than Strategy 1. Thus, we once again have an example
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of the trade-off between adaptation speed and probing signal size.

Later, in Chapter 9, we will use the specific probing signal strategy of Subsection 7.4.3, that
is, Strategy 1. It is hoped that the presentation of the other strategies provides insight that may be
useful to some future researchers. As will be discussed later in the final chapter of this thesis, the
issue of probing signal choice is an area for future research.

7.5 Conclusion

In this chapter, we have given a rather qualitative presentation of some of the remaining
issues involved in the development of a complete robust adaptive control system. For illustrative
purposes, we have developed a simple control-law update algorithm that can be used in
combination with the robust estimator. In addition, for this simple control-law update algorithm,
we have suggested an example strategy for the introduction of a probing signal into the closed-loop
adaptive system. These results will later be used in the simulation examples of the thesis.

Again, this chapter was meant to tie together the many functional blocks of a complete robust
adaptive control system, thereby illustrating the role of the robust estimator. The probing signal
discussion of this chapter constitutes only a beginning to the investigation of this issue. However,
it is important to emphasize that the robust adaptive control framework that we have provided,
allows for the formulation of such probing signal strategies using current frequency-domain
information. That is, with reference to the modification that was described at the end of Subsection
7.4.3, we have on-line knowledge of where the plant has been identified well and where it hash't,
in the frequency domain.
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CHAPTER 8.
SIMULATIONS OF THE BASIC BUILDING BLOCKS OF THE ROBUST
ESTIMATOR

In this chapter, we will illustrate the properties of two of the basic building blocks of the
robust estimator by considering several simulation examples. The robust estimator is a complex
combination of several simpler building blocks. Later, in Chapter 9, we will perform simulations
of the robust estimator as a whole; however, when simulated as a whole, it is difficult to
understand the properties of the individual components of the robust estimator. Thus, in order to
be able to understand the behavior of the complete robust estimator we must first fully understand
the properties and behavior of the robust estimator's individual components. This simulation
chapter is a logical follow-on to the signal processing theorems of Chapter 2. We will be
simulating the results of Chapter 2 using the design rules and insight of Chapter 6. Specifically, in
the present chapter we examine the properties of: 1) the time-domain bounding method of Theorem
2.4 that is used in the time-domain parameter estimator of Chapter 4; and 2) the frequency-domain
error bounding method of Theorem 2.2 that is used in Sections 5.2-5.3. We will use a simple
first-order plant, with no unmodeled dynamics, and several different types of input signals in the
simulations of this chapter. We use many types of input signals so that we can understand the
robust estimator's components under many excitation conditions. The understanding gained in this
chapter will be very useful in understanding the properties of the robust estimator as a whole in the
following chapter.

8.1 Plant Description and Design Choices

8.1.1 Plant Description

Consider the following plant which we will use throughout this chapter.

Continuous-time Plant: HSs)=1/(s+1) © h@)=et t>0. (8.1.1)

Choosing the sampling period T=n/5, corresponding to a sampling frequency 0 =10 rads/sec.,

which is ten times the continuous-time pole, we find that the zero-order hold equivalent of the

above continuous-time plant is

Discrete-time Plant: H(z)=r/(z-p) © h[n]=gptn>1 (8.1.2)
where

r=(1-e1)=0.46651; p=e 1 =0.53349; and g =r/p = 0.87446. (8.1.3)
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We compute

HE% D =1/ VY (cos@ nk/N)-p )2 +sin@ nk/N)?, fork=0,...,N-1.  (8.1.4)

where again ay =(k / N)w,.
In the following simulations we will assume that the input signal u[n] is always less than

unity, so up,x=1 in the signal processing theorems.

8.2 Simulations of Time-domain Bounding

In this subsection, we will present simulation results that illustrate the time-domain bounding
mechanism of Theorem 2.4. This theorem is used to find a time-domain bounding function on the
error signal, due to the unstructured uncertainty, in the time-domain parameter estimator of Chapter
4. For the purposes of this chapter, we consider the computation of a time-varying bound on ly[n]|
where

y[n] = h[n] % u[n] (8.2.1)
and h[n] is the plant given by Eqn. (8.1.2). With reference to Theorem 2.4, we define the

following time-varying bound ;[n] as follows,

lyln]l < yInl,n>0, (82.2)
where
. (N/2)-1
yin] = 1 {HEODI U ag! + 2 X HEDI U op)!
N k=1 (82.3)

+ HEON2) T U@/ } +2 e 20 L
. i=N

First, we must choose the DFT length for the time-domain bounding mechanism. To gain insight,
we find an equivalent expression for the bound of Eqn. (8.2.3),

N-1
yinl = 1 { 2 HEOTUNY @) +2 upay g PN/ (- p), (8.2.4)
N k=0

where we have used the results of Appendix C to find a closed-form for the summation,

2nfili= X gpi=gpN/(-p). (8.2.5)
i=N i=N
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In Section 6.5, we discussed the tradeoff between the two terms of Eqn. (8.2.3). For the
parameters of the example that was described in the previous section, we find that for N=6 the
second term of Eqn. (8.2.4), i.e. the remainder term, is 0.086428. This is a small number
compared to the values of y[n] that we expect to observe. For example, since we assumed that
Umax=1, consider the output of the plant of Eqn. (8.1.2) for a unity magnitude sinusoid at a
frequency that is less than 1 rad/sec., i.e. the pole of the plant. In this case, the output y[n] will be
on the order of unity. Thus, the remaider term 0.086428 is an order of magnitude smaller than the
plant output. We conclude that, based only on the requirements of the time-domain bounding
mechanism, a good choice for the DFT length is N=6. In the following subsection we will choose
the DFT length for the frequency-domain bounding method to be N=50. In this case, the

remainder term is only 8.51416x10-14. However, as was discussed in Section 6.5, the bounding

function of Eqn. (8.2.3) tends to increase with N for some wideband excitations, as will be seen in
the simulation examples.

Before presenting the actual simulation results, we make some observations concerning the
bound of Eqn. (8.2.4) and hence Eqn. (8.2.3).

Qbservations;
1) Eqn. (8.2.4) is a tight bound on ly[n]l when the significant terms in the sum
N-1

2. HET) Upey) Wi kn, (8.2.6)
k=0

have the same phase.

2) As was observed in Subsection 6.5, if u[n] is a sinusoid with frequency o =(k/ N)OJS, then

IUN“((x)k)I will be nonzero for only one or two terms in the bounding summation and,

consequently, Eqn. (8.2.4) will be a tight bound.
3) As was also observed in Subsection 6.5, if u[n] is a wideband excitation, then the bound of
Eqn. (8.2.4) can increase with the square root of N, the DFT length.

Now we present simulations showing the actual value of y[n], as well as the time-varying
magnitude bound computed using Eqn. (8.2.3).

Simulation 8.2.1: Sinusoidal Input, N=6

For this simulation we use the sinusoidal input signal
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u[n] =sin( (2 /5)n)=sin2nT),n>0. 8.2.7)
So, since the frequency of this input signal corresponds to ®=2 rads/sec, we find that for n > N-1,

UNn(mk) will have energy at 2 rads/sec and ®¢-2=8 rads/sec. However, for our choice of N=6,

the discrete frequencies are W)= 0, 1.67, 3.33, 5.00, 6.67, and 8.33 rads/sec. This means that for

n > N-1=5, the values of IUNn((ok)I will be a result of a two sinc functions, one centered at 2

rads/sec and the other one centered at 8 rads/sec. as was shown for the case of a disturbance in

Eqn. (6.4.4). Thus, in terms of the bounding function of Eqn. (8.2.3), IUN“(O)k)I will be the

largest for k=1 with the other terms contributing smaller amounts to the sum. A consequence of
this dominance by one term is that the bounding function will be relatively tight, but not as tight as

in the case where the sinusoid frequency corresponds to one of the discrete frequencies wy.. The

output signal y[n], as well as the computed bounds ;[n] and -_y—[n] are shown in Figure 8.1. Since
u[n] is zero for n <0, there is a small transient in the bound until n=5 (3.14 secs.) at which time 6

data points have been collected for computing IUNn(mk)I. As can be seen in Figure 8.1, the bound

;f—[n] has a component that oscillates with the same frequency as the input signal u[n].

Simulation 8.2.2: Sinusoidal Input, N=50

For comparison, we again use the sinusoidal signal of Eqn. (8.2.7) and compute the bound
;[n] using the longer DFT length, N=50. The output signal y[n], as well as the computed bounds

;[n] and -;[n] are shown in Figure 8.2 for N=50. In this case, there is a much longer, more
conservative transient in the bound than in the case of N=6. However, we also note that forn >
N-1=49 (30.79 secs.), the bound is a constant and is actually tighter than in the N=6 case. This is

a consequence of the fact that for n > N-1, IUNn((nk)I will be nonzero for only k=10 in Eqn.

(8.2.3), since for N=50 the sinusoid frequency corresponds exactly to one of the discrete

frequencies of the 50-point DFT. That is, for N=50, ty =, =2 rads/sec.
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Figure 8.1: Plant Output y[n] and Bounds ;[n] and -;[n] for Sinusoidal Input and N=6.
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Simulation 8.2.3: Square-wave Input, for N=

For this simulation we use the square-wave input signal, ufn]=( Tf[n] periodic with period 20)
for n >0, where

un] =4 1,for0<n<9 (8.2.8)
-1,for10<n<19.

The fundamental frequency of u[n] is 0.50 rads/sec., so we expect UNn(a)k) to have energy at this

fundamental frequency and its harmonics at 1.0, 1.5, 2.0, . . , 9.0 and 9.5 rads/sec. However, the

actual DFT, UNn((ok), will depend on the time index n and the DFT length N. The output signal

y[n], as well as the computed bounds ;[n] and -;[n] are shown in Figure 8.3. Again, since u[n]
is zero for n < 0, there is a small transient in the bound until n=5 (3.14 secs.) at which time 6 data
points have been collected for computing IUNn(o)k)I. The small value of N results in a tight bound.

If a larger value of N is used then the bound can be conservative. This possibility is addressed in
the next set of simulations.

Simulations 8.2.4-7: Square-wave Input, for N=20, 50, 90 and 100

We use this case of a square-wave input to do a simulation study of the effects of the DFT

length N on the bound ;[n]. In Figures 8.4-11 we show both the time-domain bound and

IUN-“((Dk)I at n=99 (62.20 secs.), for the cases of the DFT length N being 20, 50, 90 and 100.

First, we notice that, if the length of the DFT is the same as a multiple of the period of the inpuf
signal u[n], then the time-domain bound reaches a constant steady-state value. That is, for the
cases of N=20 and 100, after the initial transient ends at time index N-1, the time-domain bound
reaches a constant steady-state value which is the same for both cases. The DFT magnitudes for

these cases, see Figures 8.8 and 8.11, show that the discrete frequency points ®, correspond to

the fundamental and harmonic frequencies of the square wave. Thus, the sum of Eqn. (8.2.3) has
only 5 nonzero terms and, hence, is a relatively tight bound. For the cases of N=50 and 90, the
sum of Eqn. (8.2.3) has many nonzero terms as can be seen from Figures 8.9-10. For these cases,
we see from Figures 8.5-6 that the steady-state time-domain bound is more conservative than for
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the cases of N=20 and 100. We also observe, from a comparison of the time-domain bounds for
the cases of N=50 and 90, that the bound increases with N.

As a final note, we see that for this square-wave input signal the bounding function is more
conservative than for the case of a pure sinusoidal input signal. This is because of the difference in
the number of significant terms in the sum of Eqn. (8.2.3). Consider the case of N=50 where, as
can be seen from Figure 8.9, there are many terms that are significant in the sum of Eqn. (8.2.3).
For the sinusoidal input case, there is only one term in the sum for n > N-1.
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-1.5 -1.0

0.0  10.0 20.0 30.0 10.0 50.0 60.0 70.0
: TIME IN SEC.

Figure 8.3: Plant Output y[n] and Bounds y[n] and -y[n] for Square-wave Input and N=6,
(y[n] =——, y[nland -y[n} =----)
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Figure 8.4: Plant Output y[n] and Bounds —y—[n] and -;[n] for Square-wave Input and N=20.
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Figure 8.5: Plant Output y[n] and Bounds ;[n] and -;[n] for Square-wave Input and N=50.
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Figure 8.6: Plant Output y[n] and Bounds ;[n] and -;[n] for Square-wave Input and N=90.
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Figure 8.7: Plant Output y[n] and Bounds ;l_[n] and -y[n] for Square-wave Input and N=100.
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Figure 8.8: IUN“(cok)I at n=99 (62.20 secs.) for Square-wave Input and N=20.
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Figure 8.10: IUN“(mk)I at n=99 (62.20 secs.) for Square-wave Input and N=90.
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Figure 8.11: lUNn(a)k)l at n=99 (62.20 secs.) for Square-wave Input and N=100.
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Simulation 8.2.8: Impulses Input. for N=6

For this simulation we use the input signal

u[n] = 0.02 sin(x n) / sin(0.02 T n), n > 0. (8.2.9)
where, in practice, we use L'Hopital's rule to find that

u[n] = cos(w n) / cos(0.02 &t n), when sin(0.02 T n) =0. (8.2.10)
This signal is simply a sequence of unit impulses at multiples of 50 time samples, which have

alternating sign. The output signal y[n], as well as the computed bounds ;[n] and -;[n] are shown
in Figure 8.12 for N=6. From this figure we see that the small value of N results in good tracking
for the time-domain bound. For the period of time from n=5 (3.14 secs.) to n=49 (30.78) secs.,
the bound reduces to the remainder term of 0.086428 in Eqn. (8.2.4).

Simulation 8.2.9: Impulses Input, for N=50

For this simulation we again use the input signal of Eqns. (8.2.9-10) except that now we use

the longer DFT length of N=50. For this choice of N and input signal, IUNn(cok)I is constant and

equal to unity for all k. Thus, the time-domain bound is a constant for all n as shown in Figure
8.13. For this large value of N we get no tracking of the plant output.
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Figure 8.12: Plant Output y[n] and Bounds ;[n] and -;[n] for Impulses Input and N=6.
(y[n] =——, yln] and -y[n] =----)
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Figure 8.13: Plant Output y[n] and Bounds y[n] and -y[n] for Impulses Input and N=50.

(y[n]=——, y[n]and -y[n] =----)




Chapter 8 . Page 178

imulation 8.2.10: Pseudo-random Input, for N=

For this simulation we use a pseudo-random input signal. To generate this signal, a
pseudo-random signal that was white and had a gaussian probability distribution, with zero mean
and standard deviation 0.75, was passed through the following first-order filter, whose pole
corresponds to a continuous-time pole of 1 rad/sec for our choice of sampling period.

T(z) =0.46651 z / (z - 0.53349) (8.2.11)
To yield the signal u[n], the output of this filter was then passed through a saturation function to
guarantee that la[n]l < 1. The input signal u[n] is shown in Figure 8.14. The output signal y[n], as

well as the computed bounds ;[n] and -;[n], are shown in Figure 8.15. For this short DFT

length, the bound tracks the actual plant output very well. This is because the bound is based on
the values of the input signal at only 6 time indices.

Simulations 8.2.11-12; Pseudo-random Input, for N=50 and 100

For these two simulations we again use the pseudo-random input signal of the previous
simulation. We examine the effect of using the longer DFT lengths of 50 and 100 on the
conservativeness of the bound. We have previously observed that the bound should increase with
the square root of N for the kind of input that we are using in these two simulations. First, in

Figure 8.16, we show IUNn(cok)I for N=50 and for n=100 (62.83 secs). From this figure we see
that many terms in the sum of Eqn. (8.2.3) will be significant, so we expect conservatism in the

bound. Now, the output signal y[n], as well as the computed bounds _y_[n] and -31—[n] are shown in
Figures 8.17-18 for the cases of N=50 and 100, respectively. Considering first the case of N=50,
we see that the computed bound is conservative once the initial transient is over, although during
the transient the bound is quite tight. The bound doesn't vary as much as the actual output signal
since its value depends, essentially with equal weight, on the last 50 time samples of the input
signal whereas the actual output depends most strongly on the 5 or 6 most recent values of the
input, via the plant. Thus, there is a kind of averaging process that is occurring in the computation
of the time-varying bound. For the case of N=100, the bound is even more conservative.
Comparing Figures 8.17 and 8.18, we see that the steady-state value of the bound increases from
roughly 1.4 to 2 as N increases from 50 to 100. This is consistent with our analytically derived
prediction that the bound increases with the square root of N.
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Figure 8.14: Pseudo-random Input u[n].
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Figure 8.15: Plant Output y[n] and Bounds ?[n] and -;[n] for Pseudo-random Input and N=6.
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Figure 8.16: IUNn(mk)I at n=100 (62.83 secs.) for Pseudo-random Input and N=50.
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Figure 8.17: Plant Output y[n] and Bounds ;[n] and -;[n] for Pseudo-random Input and N=50.
(y[n]=——, yln] and -y[n] =----)
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Figure 8.18: Plant Output y[n] and Bounds ;[n] and -;[n] for Pseudo-random Input and N=100.
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8.3 Simulations of Frequency-domain Bounding

In this subsection, we will present simulation results that illustrate the frequency-domain
bounding method of Theorems 2.1-2. This theorem is used to find a bounding function on the
frequency-domain error, due to the use of finite-length data, in the frequency-domain estimator of
Chapter 5. For the purposes of this section, we consider the true plant to be the first-order plant
H(z) of Section 8.1. From Theorem 2.1,

Y@y = HEOT) UnR(oy) + EnN@y), fork=0,..,N-1, (83.1)

where we must find a magnitude bound on the function EN“(mk). In Chapter 6, this problem of

using finite-length data was viewed as an "end-effects" problem. The result of Corollary 2.1
represents what we will refer to as the "worst-case” bound on the end-effects error. Since we have
information about u[n] that is learned on-line, we can compute the tighter bound given by Theorem
2.2 where M is chosen as described in Chapter 6. This frequency-domain bounding function is
given by

M-1

En™(@y) = 2 il U (o) - UNY@p! +2 e, sPM (M- Mp +p)/ (1-p)%,
i=1 (8.3.2)
fork=0,..,N-1,

where we have used the results of Appendix C to find a closed-form expression for the summation,

2 ih[ll=2 igpi=gpM M-Mp+p)/(1-p) (83.3)
i=M =M

Now, we will discuss the choice of the memory length M and the DFT length N for the
frequency-domain bounding method. As was explained in Section 6.6, we choose

M = integer(ayg / &ty ) = 10, (8.3.4)

where o =1 rad/sec. in our example. Further, we choose the DFT length for the

slow
frequency-domain estimator to be five times the memory length M so as to lessen the effects of

using finite-length data. So, we use N=5M=50. Since we assume that u,,,,=1, we find that the

remainder term, in Eqn. (8.3.2), is 0.078014 for our choice of M=10. For reference, if M=1, then
the remainder term is 4.2871. Note that the remainder term for the case of M=1 corresponds to the

definition of the "worst-case” bound Ewc’ which was defined in Eqn. (6.6.19).

In the following simulations, we will compute the frequency-domain error bounding function
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that was defined in Chapter 5, for the disturbance-free case. That is, we will compute a magnitude
bounding function, Ef’Nn((Dk), on the magnitude of the error, Ef,Nn(mk)» between the

frequency-domain estimate of the plant and the true plant H(E:j 0)kT) as shown below.

| YN"(@) / Un™(@y) - HEPKT) 1= Eg \Map)l < Ep ™oy, (83.5)
where

Eg NMoy) = ENN@y) / IUNM@y)l, fork=0, .., N-1. (8.3.6)

For future reference, we use EWCf,Nn(O)k) to denote the "worst-case frequency-domain" error

bounding function generated using M=1 in Eqn. (8.3.2). That is,

Eycf,N"(@p) = Bye/ IUNH@)! = ( 2upmay g0/ (1-p)? } /U@yl = 42871/ U@,
fork=0,..,N-1. (8.3.7)

Before presenting the simulation results, we will again make several observations.

Observations; ‘
1) For N=50 and the input signals that we will be considering, the worst-case

frequency-domain error Ewcf,Nn(“)k) of Eqn. (8.3.7) is not small as compared with the

values of 1H(ej ka)I, so considerable additive error is introduced, if we choose to use the
worst-case bounding function.

2) For our choice of M=10, the remainder term of Eqn. (8.3.2) is much smaller than Ewc-

Thus, if UN-“'i((nk) = UNn(o)k) and/or if lu[n]l is much smaller than uy,,, then the bound of
Eqn. (8.3.2), using M=10, will yield a much tighter bound than Eqn. (8.3.7).

3) If u[n] is periodic with period N, then UN“'i((ok)=UNn(0)k) for all k, for n-i > N-1.

Now, we present simulations that will show both the actual error function IEf,Nn(wk)l and the
time-varying, frequency-domain bounding function Ef,Nn(C‘)k)’ which is computed using Eqn.

(8.3.2). One difficulty with illustrating our results is that Ef,Nn(cok) is both a function of time and
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frequency. To observe time-variations, we will present the time-varying values of Ef,Nn(cok) ata

specific frequency. In addition, we will provide snap-shots of Ef,N"(cok) versus frequency ata

specific time.

Simulation 8.3.1: Sinusoidal Input

For this simulation we use the sinusoidal input signal of Eqn. (8.2.7). Figure 8.19 shows

the values of IE¢ N™(ay)l, B N(@y) and Eqyef N"(@y), versus the time index n, for the

frequency . =w;=2 rads/sec. Since the sinusoid has a frequency of 2 rads/sec, it is expected that
9 k™10 cq

the actual error will become small as can be seen in Figure 8.19. It is also clear from this figure

'~ that the bound -F:f,Nn(mlo) is superior to the worst-case bound. That is, even under good

excitation conditions, the worst-case bound still doesn't get any smaller than 0.17149. For

comparison, the bound Ef,Nn(mlo) becomes 0.0031206 in steady-state, which is a factor of 55
smaller than the worst-case bound. In Figure 8.20 we show |Ef’N“(o)k)l, Ef,Nn(a)k) and

Ewcf,Nn(‘”k) vqsus frequency for the time index n=5 (3.14 secs.). This figure shows that during ‘

the transient, there is information at frequencies other than just 2 rads/sec. For n > N-1=49,

UN™(ex) is zero for all frequencies except @ so that [E¢ \(@y)l will be infinite at these

frequencies, that is, it will provide no information at the frequencies other than wy=2 rads/sec. In

Figure 8.21, we show both the cumulative frequency-domain error bounding function

Ecumf,Nn(mk) and the actual error magnitude 'Ecumf,Nn(mk)l between the true plant and the

cumulative frequency-domain estimate, both of which were defined in Section 5.3. These
cumulative values are shown for time index n=111 (69.74 secs.). This figure again shows how the
transient yields information at many frequencies other than just that of the sinusoidal input. The
opposite peaks at 4 rads/sec are due to the fact that in Eqn. (8.3.2) the phase cancellations that
occur in the actual frequency-domain error function are ignored and, instead, all terms are summed.
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Figure 8.19: Time History of [Ef N™(@)l, Ef N(®1) and Eyycg N(@ ) for Sinusoidal Input.
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Figure 8.20: Frequency Snapshot of IEf,N5 (mk)l, Ef,NS ((x)k) and Ewcf,NS ((ok) for Sinusoidal
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Figure 8.21: Cumulative Error IEcumf,Nl 1 1(0)k)l and Bound Ecumf,Nl 1 1(cok) for Sinusoidal

Input. (EgumeN! 1 H@=—— Eumen @ =----)

Simulation 8.3.2: Square-wave Input

For this simuiation we use the square-wave input signal of Simulation 8.2.3. Figure 8.22

shows the values of IEg N™(@ )l Er (@) and Eyyc N(o) versus the time index n, for the

frequency cok=0310=2 rads/sec. For time indices n=4 (2.51 secs.), 9 (5.65 secs.), 14 (8.80 secs.),
19 (11.94 secs.), ... we see that the input signal has no frequency component at 2 rads/sec,

resulting in an infinite value of the frequency-domain error 'Ef,Nn("’lo)L This lack of some

frequency components for some time indices is also apparent from Figure 8.9, which shows
IUNn((n)k)l for n=99 (62.20 secs.). In Figure 8.23, we show IEf’Nn(cok)l, Ef,Nn(cok) and

Ewcf Nn((ok) versus frequency for the time index n=59 (37.07 secs.). The square-wave input

used in this simulation results in a large frequency-domain error bound relative to the magnitude of
the plant, since it has the worst-case magnitude of 1 for all time and, for some time indices, it has
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the worst-case phase from the point of view of our DFT estimation method when using a window

length of 50. Consider the situation at n=59, at which time the DFT of UN“((ok) contains input
data from time indices m=10 to 59. From m=0 to 9 the input signal is +1 and from m=50 to 59 the
input signal is -1. Thus, the error nearly achieves its worst-case value at ®=0, since the signs of
u[n] at the two ends of the DFT are opposite. That is, in this situation, with respect to our window

length, the input signal looks about as unperiodic as it can be, thus yielding large errors for our
frequency-domain bounding technique. In Figure 8.24, we show both the cumulative

frequency-domain error bounding function Ecumf,Nn(“)k) and the actual error magnitude

IEcumf,Nn(‘”k)l between the true plant and the cumulative frequency-domain estimate, for time

index n=111 (69.74 secs.). This figure shows that our bounding technique provides a tight bound
on the actual error associated with our cumulative frequency-domain estimate. As expected, the
frequency ranges where we do good identification correspond to the frequency ranges where we
have input signal energy as can be seen from Figures 8.24 and 8.25. As a final note, by comparing

Figures 8.9 and 8.25, we see how IUN“(mk)I changes from time index 99 to 100.
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UNITS

Input. ( 'Ecumf,N1 1 l(a)k)l =— Ecumf,Nl 1 l(mk) =----)

30.0

15.0 20.0
1 1

5.0 10.0
1

©

0.0

| TTT TzTOTTITJOTTTTTTHT‘

0.0 1.0 . . 4.0 5.0
FREQUENCY IN RADS/SEC.

Figure 8.25: lUNn(wk)l at n=100 (62.83 secs.) for Square-wave Input.
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Simulation 8.3.3: Impulses Input

For this simulation we use the input signal of Eqn. (8.2.9) for which IUNn((ok)l=1, forall k

when N=50. Figure 8.26 shows the values of IEf,Nn(mk)I, Ef,N“(cok) and Ewcf,Nn("’k) versus

the time index n, for the frequency ®, =w,,=2 rads/sec. Our frequency-domain error bounding
k=10 q

function works very well as compared with the worst-case bound which has the expected value of

42871, since again IUNﬂ(cok)I is unity for all frequencies. In Figure 8.26, our bounding function

approaches the expected value of 0.078014 during the time periods between the impulses, while the
actual error approaches effectively zero during these time periods. For this example, the bounding

function Ef,Nn(mk) shown in Figure 8.26, holds for all frequencies, not just ;4. However, the
actual error IEf,Nn(cok)l differs with frequency as can be seen in Figure 8.27, which shows

IEf,Nn(mk)l, Ef,Nn(mk) and —E—wcf,Nn(“)k) versus frequency for the time index n=100 (62.83
secs.). In this figure, the actual error IEf’Nn(o)k)l is simply twice the magnitude of the plant
transfer function. At the end of the simulation, see Figure 8.26, the cumulative frequency-domain
error bounding fuﬁction, Ecumf,Nn(mk)’ is 0.078014 at all frequencies, while the actual error
magnitude 'Ecumf,Nn(mk)L between the true plant and the cumulative frequency-domain estimate,
is zero to the numerical accuracy of the simulation, at all frequencies. That is, from Eqn. (2.2.2) it
can be seen that [En(ey )i will be less than

Y In[i]l = 4.25708 x 10~14, (8.3.8)
i=N

for n=49 since UN49'P(cok)=UN49(mk) for p=1, 2, ..., 49, in this example.
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Simulation 8.3.4: Pseudo-random Input

For this simulation we use the pseudo-random input signal of Simulation 8.2.10. Figure

8.28 shows the values of IEf,Nn(mk)I, Ef’Nn(cok) and _E—wcf,Nn(“)k) versus the time index n, for
the frequency @, =w; =2 rads/sec. In Figures 8.29-30, we show IEf’N“(mk)l, _E_f,Nn(cok) and
Ewcf,Nn(mk) versus frequency for the time indices n=59 (37.07 secs.) and n=74 (46.50 secs.).

These figures show: 1) the superiority of our bounding function Ef,Nn(mk) with respect to the

worst-case bounding function —E—'wcf,Nn(“)k)' and 2) how the bounding function Ef,Nn(cok)

provides information in different frequency ranges at different times. In Figure 8.29, the actual

error IEf,Nn(cok)I is too small to be seen in the plot. In Figure 8.31, we show both the cumulative
frequency-domain error bounding function Ecumf,Nn(mk) and the actual error magnitude

lEcumf,Nn(mk)l between the true plant and the cumulative frequency-domain estimate, for time

index n=111 (69.74 secs.). This figure shows that, even for a random type of input signal, the
cumulative frequency-domain estimate is quite accurate and our bounding technique provides a
useful bound on the actual error corresponding to this estimate. In the passband of the filter used to
generate the input signal, that is, for frequencies less than 1 rad/sec., our bounding methodology
provides a plant estimate which is guaranteed to have an error magnitude of less than about 5% of
the plant's magnitude. Note that the plant has a magnitude of approximately unity for frequencies
that are less than 1 rad/sec.
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8.4 Conclusions

In this chapter, we have investigated the basic properties of the time-domain bounding
mechanism and the frequency-domain error bounding method. We list the following conclusions
concerning the time-domain bound:

1) It is sensitive to relationships between the length of the DFT and the cycle time of any
oscillations in the input signal u[n].
2) The more terms that make significant contributions in the frequency sum of Eqn. (8.2.3), the
more conservative the time-domain bound tends to be.
3) The time-domain bound increases with the square root of N for pseudo-random types of
input signals like the one described in this chapter.
We also summarize our conclusions for the frequency-domain error bounding method:
1) The worst-case frequency-domain error bounding function is too conservative to be of use
for moderate choices of the DFT length.
2) The frequency-domain error bounding method of Theorem 2.2 and Eqn. (8.3.2), where M
is chosen as described in Chapter 6, yields a useful frequency-domain bounding function for the
same DFT length for which the worst-case error bounding function is uselessly conservative.
3) The simulation with the pseudo-random input signal reveals that our frequency-domain error
bounding method can perform very well indeed for rich input signals.
These conclusions give us an understanding of the basic properties of ‘both the time-domain
bounding mechanism and the frequency-domain bounding method. Having established this
understanding, it will be easier to understand the more complex behavior that occurs when the
robust estimator is simulated as a whole.
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CHAPTER9
SIMULATIONS OF THE ROBUST ESTIMATOR IN OPEN AND CLOSED LOOP
SITUATIONS

9.1 Introduction

In this chapter, we will illustrate the properties of the robust estimator through several
simulation examples. First, we present open-loop simulations that illustrate the properties of the
robust estimator itself. Then, we present closed-loop simulations of a robust adaptive controller
that uses the robust estimator. The chapter is organized as follows.

In Section 9.2, the example plant and disturbance that will be used throughout this chapter,
are described and analyzed. This lengthy section includes a development of all of the bounding
functions that are used in the robust estimator. Next, the open-loop simulations of the robust
estimator are presented in three parts, Sections 9.3 through 9.5. In Sections 9.3 and 9.4, we
present simulations that demonstrate the properties of some of the robust estimator's components.
These sections are meant to provide insight so that we can understand the simulations of the robust
estimator in Section 9.5. Specifically, in Section 9.3, we simulate the time-domain parameter
estimator of Chapter 4 that uses the time-varying dead-zone. In this section, the time-domain
- parameter estimator is simulated for an ideal case, for an unmodeled dynamics alone case and for a
disturbance alone case. These simulation results will allow us to understand the individual effects
of unmodeled dynamics and a disturbance. In Section 9.4, we present simulations of the
frequency-domain bounding methodology alone, without a parameter estimator, so that we can see
how the robust estimator would perform if the parameter estimator worked perfectly. Then, in
Section 9.5, we present open-loop simulations of the robust estimator as a whole. We present a
simulation where the dead-zone based, time-domain parameter estimator is used and a comparable
simulation where the frequency-domain parameter estimator is used. The dead-zone based
parameter estimator will be shown to perform poorly. The simulation of the dead-zone based,
time-domain parameter estimator, in this section, is the logical follow-on to the simulations of
individual effects that are presented in Section 9.3. That is, in the robust estimator simulations of
Section 9.5, we include both unmodeled dynamics and a disturbance whereas in Section 9.3 we
examined these effects individually. A second purpose of Section 9.5 is to show the effect of using
different types of unmodeled dynamics on the robust estimator with the frequency-domain
parameter estimator. All of the open-loop simulations of Section 9.5 include both unmodeled
dynamics and a disturbance.

In Section 9.6, we present closed-loop simulations of an adaptive control system that uses a
simple pole-zero cancellation control-law in conjunction with the robust estimator. As in the
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open-loop simulations of Section 9.5, all of the closed-loop simulations include both unmodeled
dynamics and a disturbance. The major conclusions of this simulation chapter are summarized in
Section 9.7. The bottom line of the closed-loop simulations is that the robust estimator can indeed
provide performance-improving information to a control-law update algorithm under the "right"
excitation conditions. In some of the closed-loop simulations, it will be necessary to introduce a
probing signal to enhance identification and, hence, provide the "right" excitation conditions.

9.2 Description and Analysis of Simulation Example

In this section, we describe the simulation example and discuss the satisfaction of the
assumptions of the robust estimator (see Chapter 3). In addition, we make several design choices
for the implementation of the robust estimator (see Chapter 6). While the main purpose of this
section is simply to present the simulation example, several subthemes will be developed. In
particular, we will show how the continuous-time unmodeled dynamics map over to discrete-time
unmodeled dynamics of approximately the same size, for this example. These results are consistent
with the approximations that were presented in Section 3.3.

Since this section is quite lengthy, we outline its organization. The continuous-time nominal
plant structure and the continuous-time unmodeled dynamics are described in Subsections 9.2.1
and 9.2.2, respectively. The design choices for the robust estimator, such as the sampling period
and the DFT lengths, are discussed in Subsection 9.2.3. In Subsection 9.2.4, we list four cases of
the plant example that will be used in our simulations. That is, we use four cases of our plant
model that have different combinations of parameter values and unmodeled dynamics. The
satisfaction of the various assumptions of the robust estimator, is the topic of Subsection 9.2.5. In
Subsections 9.2.6-8, the disturbance and input signals are described. The last subsection, 9.2.9,
describes a projection modification which will be used with both the time-domain and
frequency-domain parameter estimators. '

9.2.1 Description of the Nominal Plant

Consider the following nominal plant which we will use throughout the rest of the chapter.

Continuous-time Nominal Plant: GS(s) = ggnzg s/ ( 2§ggn) +1)
s2 + 20wy s + 02 (9.2.1)
or

GS(s) = LS80 (9.2.2)

s2 - a® s-a%
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where
a® =-20a,; bSy=w,/2¢; and b, =-a% =0, (9.2.3)

We find that the zero-order hold equivalent of the above continuous-time plant is

Discrete-time Nominal Plant; G(z) = z+by

22 - az-2 (9.2.4)
where
a;=2eT cos (V1-22 0,T) (9.2.5)
a,=-e200nT (9.2.6)
by=1-{Ksin(V1-£2 o,T)+cos(V1-22 o T) ) el@nT (9.2.7)

by={Ksin(V1-¢2 mnT)-cos(J 1-¢2 ®,T)} e-tonT 4 e-200, T
=1-a;-2a;-b, (9.2.8)
and where

K=(2-1)/2¢ V1-22). - 9.2.9)
The bounded parameter space ©F, in which the continuous-time parameter vector
8°=[a®, a% b%, bcl]T is contained, is defined by Eqn. (9.2.3) and the following
€° = {8° | 6°=[a%, (0 2y ) b(Gmy) b (0 1T
where € [0.2,0.8], o, € [1,2] rads/sec. and C(on >0.4 sec.”1 }. (9.2.10)
Note that there are only two parameters, { and ©,,, that regulate the location of the single zero and

the two poles. The bounded parameter space ©, in which the discrete-time parameter vector

8=[a; a, b, bl]T is contained, is defined similarly by Eqns. (9.2.5-9) and the following
@ = { e I e=[al(Csmn) aZ(C’(Dn) bO(C’wn) b](C’(on)]T

where { € [0.2,0.8], ®, € [1,2] rads/sec. and Lo, > 0.4 sec.”l }. 9.2.1D)
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As was discussed in Subsection 3.3.4, the discrete-time parameter vector 0 is the result of a

mapping f(¢) of the continuous-time parameter vector 6°. Thatis, we say that 0=£(6%)e ©, where

© can be alternatively defined by Eqn. (3.3.30).

As can be seen from Eqn. (9.2.1), the continuous-time plant G€(s) has two complex poles
and a zero on the real axis at -ZCmn, which is twice the frequency of the real part of the complex
pole pair. Throughout the following analysis of the plant, the various supremums that we will need
to calculate over the sets ®° and ©, will actually be computed using a 101 point grid. That is, an
11-by-11 point grid of { and o will be used where the constraint, Lo, > 0.4 sec.”! eliminates 20
of the original 121 grid points leaving the aforementioned 101 points. In Figure 9.1, the complex
pole pair and the zero of G€(s,8°) are superimposed for all 101 points of the grid. Similarly, in
Figure 9.2, the complex pole pair and the zero of the discrete-time nominal plant G(z,f(6%)) are

superimposed for all 101 points of the grid where we have used a sampling period of T=n/25 sec.,
a choice that we will later justify. In Figure 9.3, we show a log-log plot of the maximum and

minimum magnitude of G(jw,6°) versus frequency, for all 6 in ©°. A linear scale version of

Figure 9.3 is shown in Figure 9.4 since we will be using a linear scale in the preséntation of the
simulation results.
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9.2.2 Description of ;(he Continuous-time Unmodglgg Dynamics

In this subsection, we will describe the two types of unmodeled dynamics that we will be
using in the simulations to follow. For the purpose of illustration we will consider the hypothetical
situation where we know that the unmodeled dynamics are either: 1) a multiplicative second-order
system with damping ratio between 0.3 and 1, and a natural frequency that is greater than 50
rads/sec., or 2) a time delay of no greater than 0.04 secs. Our strategy will be to first find

continuous-time bounding functions, Acu(j(:)) and ch(iw),‘that are valid for both the second-order
and the time-delay unmodeled dynamics. Recall that A% (jo) and VC(jo) are the bounding
functions that are required by the continuous-time assumptions of the robust estimator, as described

in Section 3.2. Later, we will use Acu(io)) and ch(ico) to find discrete-time bounding functions,

Au(ej (’)T) and Vu(ej coT), that are valid for both the second-order and the time-delay unmodeled

dynamics interacting with our uncertain plant.
Consider the bounding function

A% ()= § ©/25, for < 50 rads/sec. : (9.2.12)
2, for w > 50 rads/sec.
With reference to Example 2 of Subsection 6.3.2, we find that the function of Eqn. (9.2.12)

bounds the magnitude of the unstructured uncertainty 8°u(jm) of all second-order unmodeled

dynamics that have complex poles (i.e. { < 1), and a natural frequency that is greater than 50

rads/sec. Figure 9.5 shows the bound of Eqn. (9.2.12) and ISCqu)I for second-order unmodeled
dynamics with a damping ratio of 0.3 and a natural frequency of 50 rads/sec. In addition, the

bounding function of Eqn. (9.2.12) also bounds I8°u(j(o)l corresponding to all pure time delays that
are less than 0.04 secs. The bound of Eqn. (9.2.12) and Scu(jco)l for a time delay of 0.04 secs.

are both shown in Figure 9.6. In Figure 9.7, we show the derivative function Id8°u(jo))/d(ol for

both second-order unmodeled dynamics with a damping ratio of 0.3 and a natural frequency of 50
rads/sec., and for the unmodeled dynamics of a 0.04 sec. time delay. For frequencies less than

about 25 rads/sec, Id8°u(i(o)/d(ol is less than 0.04 for both types of unmodeled dynamics.
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9.2.3 Design Choices

The various design choices that were discussed in a general way in Chapter 6, are now
discussed in the context of this simulation example. This subsection is concise since the reasoning
behind these design choices was already discussed extensively in Chapter 6.

Choice of Sampling Period

Although we will perform our first simulations in an open-loop scenario, later in this chapter,
we will present some closed-loop simulations where we set the target closed-loop bandwidth to

®,.1=5 rads/sec. We want our closed-loop system to have a bandwidth of 5 rads/sec. for all

possible nominal plants GS(s,0%) with 8° in @F, while being robustly stable to unmodeled
dynamics with magnitudes less than the bounding function of Eqn. (9.2.12). Consistent with our

discussion in Chapter 6, we choose the sampling frequency 0 =50 rads/sec., which is ten times the
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target closed-loop bandwidth. This choice of sampﬁng frequency corresponds to a sampling period

of T=n/25=0.12566 secs. We note that (mS/2)=25 rads/sec., which is the frequency at which the

unstructured uncertainty bound of Eqn. (9.2.12) reaches unity. Thus, using the approximation of
Eqn. (6.3.25), the discrete-time unstructured uncertainty will be less than unity for all frequencies
on the unit circle. With reference to Figures 6.1 and 6.2 of Section 6.2, for our choice of sampling

period, T=n/25, the unmodeled dynamics will have a smaller effect on the discrete-time plant than
if we had chosen a faster sampling rate.

Choice of the DET Lénggh Nt for the Time-domain Bounding Mechanism

In Section 6.5, we discussed the choice of the DFT length for the time-domain bounding
mechanism that is used in the time-domain parameter estimator. This DFT length, which we denote

by N,, is chosen by making a tradeoff between the size of the remainder term, and the possible
conservatism of thé bound for large N;. For the example of this chapter, we choose N=20. This

DFT length will later be shown, in Subsection 9.3.1, to reduce the remainder term to be the same
order of magnitude as the size of the bound itself.

Design of the Input/Output Filter F(z) for the Time-domain Parameter Estimator

As was described in Section 6.5, we must design the input/output filter F(z) that filters both
the plant input and the output signals before they are used in the time-domain parameter estimator.
In accordance with the rule of thumb given by Eqn. (6.5.3), we choose the filter

F@z) = 0.052881 z2
72 -1.64799 z + 0.70087 (9.2.13)

which has unity D.C. gain and poles that correspond to the continuous-time poles of a

second-order system with {=0.70711 and o, =2 rads/sec., for our choice of sampling period,

T=n/25 secs. With reference to the nominal plant description of Subsection 9.2.1, we see that F(z)
and the discretized nominal plant have roughly the same bandwidth. Since the bandwidth of the
nominal plant is only coarsely known, this is the best we can do in terms of designing F(z).
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Choice of the Memory Length M for the Frequency-domain Bounding Method

From Subsection 9.2.1, we know that the real part of the complex pole pair of the
continuous-time nominal plant will be no larger than -0.4 sec.”l. That is, we know that the
envelope of the impulse response of the true continuous-time plant will decay with a time constant
that is no slower than 2.5 secs. since the slowest pole of the nominal plant is also the slowest pole
of the true plant. Now, a continuous-time pole of -0.4 sec.”! maps to a discrete-time pole of

0.95098 for our choice of sampling period, T=r/25 sec. Thus, the slowest pole of the true
discrete-time plant is 0.95098, since the unmodeled dynamics are assumed to be at
high-frequencies. Using the second approximation of Eqn. (6.6.24), we compute the rule of
thumb for a choice of M,

integer( 2n/ T) / 0.4 ) = integer( o8 /o ) = 50 rads/sec. / 0.4 sec.”! = 125 (9.2.14)

slow

where again -0t o is the real part of the slowest pole of the continuous-time plant. This is only a

rule of thumb and, in fact; we will choose a larger value of M=175 for our open-loop simulations.
This larger value of M will result in a tighter frequency-domain bounding function than if we had
just used the rule of thumb value of M. An even larger value of M will be used in the closed-loop
simulations as will be discussed later. We use these large values of M because we could potentially
have a very difficult identification problem considering our target closed-loop bandwidth of 5
rads/sec. That is, with reference to Figures 9.3-4, if we have the smallest magnitude nominal
plant, then we need to reduce the additive error in the frequency-domain to roughly 0.1 at 5
rads/sec. to be able to achieve our target closed-loop bandwidth of 5 rads/sec. This is so because,
in order to reduce the multiplicative modeling uncertainty to be unity at a given frequency, we must
reduce the additive error to be roughly the same size as the nominal model at that frequency,
depending on the phase. So, considering our discussion of Subsection 6.6.5 and Eqn. (6.6.13),
we see that it is advantageous to choose a larger value of M to help make the achievable additive
error be as small as possible.

Choice of the DFT Length Ne for the Frequency-domain Bounding Method

In Subsections 6.6.2 and 6.6.3, we derived two rules of thumb concerning a lower bound
for the choice of the DFT length for the frequency-domain bounding method. We denote this DFT

length by N, to distinguish it from N;, which is the DFT length for the time-domain bounding
mechanism. From Eqns. (6.6.25-26), and (9.2.14), we find that the first rule of thumb suggests
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that Nf be chosen such that

N¢ > 125. (9.2.15)
The second rule of thumb, which is given by Eqn. (6.6.44), is based on frequency-domain
resolution requirements. From Figure 9.4, we expect that we will have to choose a large value of -

Ny to guard against inter-sample variations in the vicinity of 2 rads/sec. Eqn. (5.7.11) can be used

ej(’)T) and, thus, give us an idea of

to compute the "worst-case” a priori bounding function V, . (

what value of N is required. Note that in Eqn. (5.7.11), we must use the bounding functions,

(ej(’)T) and V (ejmT), whose development will be described in a future subsection. In any
u

event, using these bounding functions and Eqn. (5.7.11), we can compute (m)S/N)Vsu WC(G:J'(’DT)

for N=1000, as is shown in Figure 9.8. From this figure, we see that if the worst-case bounding

* function V (e]'(oT) were used instead of the on-line computed bounding function Vsun(ej (oT)

Su,wC
of Eqn. (5.7.18), then we would have to add a safety factor on the order of unity in the frequency
range near 2 rads/sec. That is, in Eqn. (5.8.3) the additive safety factor would be

(wslzmvsu,wc(ejmT)’ or half the values in Figure 9.8. Clearly, the frequency-domain resolution

requirements place the lower bound on our choice of the DFT length. Judging that the values of
Figure 9.8 are sufficiently small for our purposes, we choose Ng=1000. This DFT length will be

used in the frequency-domain bounding method and, hence, the frequency-domain parameter
estimator, throughout the rest of the chapter.
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9.2.4 Description of Four Cases for Simulation

In this subsection, we will describe four cases of the true plant that we will use in our
simulations. In these cases, we consider two different nominal models. We use a fast nominal

model with {=0.2 and ®,=2 rads/sec., which has a sharp frequency-domain peak because of the

small damping ratio. In addition, we use a slow nominal model with {=0.8 and o, =1 rad/sec.,

which doesn't have a frequency-domain peak because of the large damping ratio. The pole-zero
locations for these nominal models are shown in Figures 9.9 and 9.10. These nominal models
were chosen because they have very different characteristics. In Figures 9.3 and 9.4, the fast
system corresponds to the maximum magnitude of the nominal model, except for a small frequency
range just before the 2 rads/sec. peak. In these figures, the slow nominal model corresponds to the
minimum magnitude. We will use these nominal models with different types of unmodeled

dynamics. We denote the ideal case of no unmodeled dynamics as Case 1 where we choose {=0.2

and ©,=2 rads/sec. in the nominal model of Eqn. (9.2.1) to yield:




Chapter 9 Page 209

Case 1; ({=02 and @,=2r nd no unmodel nami

GCrye(s) = 4(s/08 +1)
s2+08s+4 (9.2.16)

whose zero-order hold equivalent for the sampling period T=mn/25 sec. is given by:

Case 1; (£=0.2 and W,=2r nd no unmodel namic
Grue®@ = - 21
72 - 1.84458 z + 0.90436 (9.2.17)

For Case 2, we use {=0.2 and ®,=2 rads/sec. in the nominal model of Eqn. (9.2.1) and
second-order unmodeled dynamics with a damping ratio of 0.3 and a natural frequency of 50
rads/sec.

Case 2: (£=0.2 and w,=2 rads/sec. and second-order unmodeled dynamics )

GCrye(s) = 4(s/08 +1). 2500
s2+08s+4 s2+30s+2500 (9.2.18)

whose zero-order hold equivalent for the sampling period T=r/25 sec. is given by:
Case2: (£=0.2 and ©,=2 rads/sec, and second-order unmodeled dynamics )

Grye(® = _0.5766623 - 0.65109 z2 +0.12783 z - 0.0096407
74 -2.13562 z3 + 1.46426 z2 - 0.30573 z + 0.020849 (9.2.19)

For Case 3, we use {=0.2 and ®,=2 rads/sec. in the nominal model of Eqn. (9.2.1) and use
the unmodeled dynamics of a 0.04 sec. time delay.

Case 3: ({=0.2 and mn=2 rads/sec. and Q.04 sec, time-delay unmodeled dynamics )

GCue(s) = 4(s/0.8 +1),e-5(0.04)
s2+0.8s+4 (9.2.20)
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whose zero-order hold equivalent for the sampling period T=m/25 sec. is given by:

Case 3: ({=0.2 and ®,=2 rads/sec. and 0.04 sec. time-delay unmodeled dynamics )

Grye(@ = 042626 2% - 0.18581 z- 0.18068
z ( Z2 - 1.84458 z + 0.90436 ) (9.2.21)

For Case 4, we use {=0.8 and w,=1 rad/sec. in the nominal model of Eqn. (9.2.1) and use
the same second-order unmodeled dynamics that were used in Case 2 above.

Case 4: (£=0.8 and =1 rad/sec. and second-order unmodeled dynamics )

GCrue(®) = (s/1.6 +1), 2500
s2+1.6s+1 s2+30s+2500 (9.2.22)

whose zero-order hold equivalent for the sampling period T=n/25 sec. is given by:

Case 4; ({=0.8 and @,=1 rad/sec. and second-order unmodeled dynamics )
Girue@ = 0.072471 23 - 0.075668 z2 + 0,014760 z - 0,0011052

7% - 209462 z3 + 1.36583 z2 - 0.27961 z + 0.018855 (9.2.23)
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Figure 9.9: Pole-zero Locations of the Fast Continuous-time Nominal Model, {=0.2 and
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9.2.5 Satisfaction of the Robust Estimator Plant Assumptions

In this subsection, we will discuss the satisfaction of the various plant assumptions of
Chapter 3. The assumptions AD1.1-1.2 of Subsection 3.6 are satisfied by the results of
Subsection 9.2.1. Further, since the continuous-time nominal model is stable for all parameter

variations in ©F, for our example, and since the unmodeled dynamics are stable, we conclude that
the true discrete-time system is stable and, hence, assumption AD1.5 is satisfied. We must still
find the bounding functions of assumptions AD1.3-4, and AD1.6-7.

Satisfying Assumption AD1.3: Finding Au(gjmT)

The bounding techniques of Subsection 3.3.2, specifically Eqn. (3.3.17), could be used to

find the discrete-time bounding function Au(ejmT) from the continuous-time bounding function

Acu(j(o). However, the resulting bounding function can be conservative and it requires much work

to compute the various supremums. In practice, the approximation of Eqn. (3.3.19) is useful. We
choose to not use this equation since it is not a guaranteed bound. Instead, we will consider some
specific cases so that we can find a rigorous bound. We will find that for the cases considered, the
approximation of Eqn. (3.3.19) turns out to be rigorously true. In the following development, we
will use Cases 2-4, which were described in Subsection 9.2.4, to find the discrete-time bounding

function Au(ejmT). In Figure 9.11, we show lﬁcu(jm)l for the second-order unmodeled dynamics

and 18, (@ T)! for both Cases 2 and 4. We see from this figure that I8, (619T)l = 15, (@)l for both
Cases 2 and 4. In Figure 9.12, we show Iﬁcu(jco)l for the time-delay unmodeled dynamics and
18,61 T)) for Case 3. Again, we see from this figure that 13, (€*1)l = I5°jo)! for the time-delay
unmodeled dynamics. For these three cases, the continuous-time bounding function of Eqn.

(9.2.12) in the frequency range 0 to ®¢/2 can be used as the discrete-time bounding function for

Cases 2-4. That is, we will use the bounding function,

A,©9T) = /25, for 0 < © < 25 rads/sec. (9.2.24)

in the following work. While we can only guarantee that the above bounding function is valid for
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Cases 2-4, which is all of the cases that we will be simulating, it is likely that this bounding
function also holds for all variations of the continuous-time parameters in ©F, We base this
statement on the fact that we have used, in a sense, the most different nominal models in ®F that we

could have. It seems likely that all other parameter variations in @ will yield bounding functions
that lie between the bounding functions resulting from the fast and slow nominal model cases, or at
least not greatly differ from this range.

Satisfying Assumption AD1.4: Findin Vu(gij)

The bounding techniques of Subsection 3.3.3, specifically Eqn. (3.3.25), could be used to

find a discrete-time bounding function Vu(ejmT) from the continuous-time bounding functions

AC. (jw) and VC (jw). However, the resulting bounding function can be very conservative and it
u u

requires a great deal of work to compute. In practice, the approximation of Eqn. (3.3.23) is useful.
We choose to not use this equation since it is not a guaranteed bound. Instead, as in the case of

Au(ejmT), we will consider some specific cases so that we can find a rigorous bound. We will
again use Cases 2-4 to find the discrete-time bounding function Vu(ejmT).‘ In Figure 9.13, we
show 1d8°(jew)/dal for the second-order unmodeled dynamics and 1d3,, (61 T/dal for both Cases 2
and 4. We see that Id8u(ej°’T)/dml = Id8°u(ia))/dool for both Cases 2 and 4. Similarly, in Figure
9.14, we show |45, (jw)/de! for the time-delay unmodeled dynamics and I3 (€ T)/dcl for Case

3. Again, we sce that 103 ,(€1°T)/dwl = 1d5%,(je)/dwl. The actual a8, T)/dwl for Cases 2-4 s
always less than about 0.04. We choose to use the bound,

V,@T) = 0.0, for 0 < © < 25 rads/sec. (9.2.25)

in what follows. As was the case for Au(ej(”T), we can only guarantee that the bounding function

of Eqn. (9.2.25) is valid for Cases 2-4; however, it is again likely that this bounding function also

holds for all variations of the continuous-time parameters in ©°.
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atisfying As urn tion AD1.6; Finding a Bounding Function on | ruelnl!

We again appeal to Cases 1-4 to satisfy assumption AD1.6, that is, to find a bounding
function on g, .[n]l. We will bound Ig, [n]l using a first-order system with a discrete-time pole
of 0.95098, which is the slowest possible pole of 8rueln] as was discussed in Subsection 9.2.3.

We use Cases 1-4 to find the gain of the first-order bounding function. Figures 9.15,9.16 and
9.17 show the impulse responses of the true discrete-time plant g, [n] for Cases 2,3 and 4,

respectively, where the impulse responses of the appropriate nominal plants g[n], that is, the plants
without unmodeled dynamics, are also superimposed on each graph. For example, the impulse
response of the plant of Case 1, which is shown as a solid line in Figure 9.15, is the impulse
response of the nominal plant of Case 2. From Figures 9.15-17 we choose the gain g of the
bounding function on Ig,[n]! as follows:

lgerueln]! < gepelnl =g p?, forn>1, (9.2.26)
where
g£=0.75 and p=0.95098 (9.2.27)

Satisfying Assumption AD1.7: Finding a Bounding Function on Ihgs[n,e]j

As for assumption AD1.6, we will appeal to Cases 2-4 to satisfy assumption AD1.7, which
is the assumption of a bounding function on the impulse response of the additive plant error, that
is, the error between the true plant and the nominal model. First, we recall the definition of Eqn.
4.4.7).

hgs[n,0] = g[n,0] * 3, [n] = gryeln] - gln.0] : (9.2.28)
From our earlier work concerning Ig,.[n]! and, hence, lg[n,0], we know that the envelope of
Ihgs[n,e]l is bounded by a first-order system with a discrete-time pole of 0.95098. To find the
gain of the first-order system, the actual impulse response hga[n,e] was computed for Cases 2-4.

From these results we choose the gain ‘a’ of the bounding function on lhgs[n]l as follows:

Ihg[n, 6]l < hogln] =ab?, fornx1, : (9.2.29)
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where
a=0.25 and b=0.95098 (9.2.30)
We have presented this bounding function for completeness. In the general method that was

described in Subsection 4.4.2, we use this bounding function E—ga[n] to find a bounding function

on thy[n]l. However, in the development of this chapter, we will not actually use this result, since

later, in Subsection 9.3.1, we use Cases 2-4 to find the required bounding function on I [n]|

directly. The boungling function that is found in this way is less conservative than the bounding
function yielded by the general method of Subsection 4.4.2. Later, in Subsection 9.3.1, this will
enable us to find a tighter bound on the remainder term of Eqn. (9.3.16).
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Figure 9.15: Discrete-time Impulse Responses, for Case 2.
( g[n] for Case 2 =——, gy c[n] forCase2=----)

In this figure, we can only see differences between the two impulse reponses during the first few
sample times.
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Figure 9.16: Discrete-time Impulse Responses, for Case 3.
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Figure 9.17: Discrete-time Impulse Responses, for Case 4.
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9.2.6 Description of the Disturbance

In this subsection, we will describe the disturbance that corrupts the output of the plant.
Since the simulations will be implemented in discrete-time, we will work entirely with a
discrete-time disturbance signal. We choose a disturbance that has most of its energy in the
low-frequency range. We make this choice so that there is some hope of identifying the plant at
frequencies beyond the open-loop bandwidth of the plant. In the frequency range above where the
plant transfer function rolls-off, we need a high signal-to-noise ratio in order to find a useful bound
on the additive frequency-domain estimation error. Said another way, in order to reduce the
multiplicative uncertainty to unity at some frequency, we must have a noise-to-signal ratio,

DN(0, )/UN (@), at that frequency that is roughly of the same order of magnitude as the plant

transfer function (see Eqn. (5.2.17)). We produce the low-frequency disturbance by using a
low-pass filter which has discrete-time poles that correspond to the continuous-time poles of a

second-order system with {=0.70711 and o, =2 rads/sec. Thus, the disturbance filter has a

bandwidth that is greater than or equal to the bandwidth of the nominal plant model in which @, is

between 1 and 2 rads/sec.

Figure 9.18 shows how the disturbance signal will be produced. The discrete-time
disturbance signal will be generated by using a pseudo-random signal that is uncorrelated in time
and that has a gaussian prdbability distribution with zero mean and a standard deviation of

0.75 * dgyctop Where dgyoor denotes the disturbance scaling factor. This pseudo-random signal
will be passed through the low-pass filter,

F4(z) = 0.052881 72
22 -1.64799 z + 0.70087 (9.2.31)

which we have chosen to be the same as the input/output filter F(z) of Subsection 9.2.3. The actual
disturbance signal d[n] is then generated by passing the output of this filter through-a saturation

function to guarantee that Id[n]l < dgyeiop- This disturbance signal is shown in Figure 9.19 for
deactor=1- Since the disturbance filter F4(z) has roughly the same bandwidth as the partially

known plant G;p,e(2), We can view the disturbance as a wideband process noise or a wideband

input noise to the plant.
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Figure 9.18: Disturbance Signal Generation.

9.2.7 Satisfaction of the Robust Estimator Disturbance Assumption

In this subsection, we will discuss the satisfaction of the disturbance assumptions of Section
3.6. Since we are starting with a discrete-time disturbance to perform our simulations, we do not
require.the methods of Section 3.5. For the disturbance of Subsection 9.2.6, we are assured that
assumption AD?2.1 is satisfied by construction, since

ld[n]! < dpax = dfactor

where again dg, . is the disturbance scaling factor. The bounding functions of assumption

(9.2.32)

AD2.2 are found empirically by computing the actual DFTs of d[n] for very large samples, that is,

- for at least as long as the longest of our simulations. For example, the bound ﬁN((ok) at a specific

frequency @, is chosen as the maximum value of IDNn((ok)I that is empirically observed for all time

indices n that are less than 2500. The bounding function I_SN(cok) for N=N¢=1000 that results
from this procedure is shown in Figure 9.20.

To find the family of bounding functions, BN+n(0)k), corresponding to n=0 to N-2, we

empirically compute, at each time index n, the maximum value of the DFT over frequency of the

unfiltered disturbance, that is, the disturbance before it is passed through the low-pass filter Fy(2).

These values for n=0 to N-2 are then made to be nonincreasing. At a given time index n, the
bounding function BN"‘n(mk) is generated by scaling the magnitude of the frequency response of

the low-pass filter F4(z) by the maximum value of the DFT over frequency, at time index n, of the

unfiltered disturbance. This complicated procedure is not of major importance but it is required, if
the robust estimator is to yield useful information during the first N-1 time samples of the
simulation when it is starting up.
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9.2.8 Description of the Input/Reference Signal

In this brief subsection, we describe the chirp-like signals that will be used as the plant input
signal in the open-loop simulations and as the reference signal in the closed-loop simulations. In
the open-loop simulations, the plant input signal u[n] will be generated as follows

ulr]=§ +1, if sin(p* (nmodulo Np2)>0andn >0, (9.2.33)
-1, if sin(p * (n modulo Np2) <O andn >0, -
0, if n<O.
where Ng=1000 and where
p=n/(2 Np =n/2000 = 0.0015708 (9.2.34)

This signal is shown in Figure 9.21 for time indices n=0 to 250 (31.42 secs.). At the time indices
jusf before n=1000 (125.66 secs.), u[n] oscillates between -1 and +1 changing every sample time.

Thus, just before n=1000 the input signal oscillates with frequency /2. The magnitude of the

DFT of the input signal, IUN“((Dk)I, is shown in Figure 9.22 for N=N¢=1000 and n=N-1=999.

We make several observations concerning this signal. First, since u[n] is periodic with
period Ng, we find that Uan((")k)= UNf“'P(mk) for p=1,..,M-1 when n > Ng-1+M-1. This means
that the frequency-domain bounding method can work well since Ean(")k) in Eqn. (5.2.4)

reduces to Erem for n > Ngy-1+M-1. Secondly, we observe that u[n] has energy at all frequencies,

as can be seen in Figure 9.22. In the open-loop simulations, we will see that u[n] is rich enough
for the robust estimator to yield useful information. We also note that u[n] has energy at high
frequencies that will excite the unmodeled dynamics. So this input signal will exercise the part of
the time-domain bounding mechanism that bounds the effect of high-frequency signals interacting
with the unmodeled dynamics. Lastly, we observe from Eqn. (9.2.33) that assumption AD3.1 of
Section 3.6 is satisfied as follows for the open-loop simulations.

la[n]l < Upax = 1, Vn. (9.2.35)

The reference signal r{n] that will be used in the closed-loop simulations will be a scaled version of

the signal given by Eqn. (9.2.33). The reference signal will be discussed further in Subsection
9.6.2.
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9.2.9 Projecting the Parameter Vector Estimate onto the Parameter Spac

In this subsection, we will describe a feature that will be used in both the time-domain and
the frequency-domain parameter estimators. This feature is necessary since both of our parameter

estimators estimate the three discrete-time parameters, a,, a, and b, which depend on only two

continuous-time parameters, { and ®,,. Note that the fourth discrete-time parameter, b, is a linear

function of the other three discrete-time parameters as is shown in Eqn. (9.2.8). The point is that
our parameter estimators do not include the nonlinear relationships of Eqns. (9.2.5-7) and thus they

can yield estimates that are not in the set ®. However, we know that the estimate of the parameter

vector should be in the set ©, since the true parameter vector is, that is, 90 € ©. To eliminate this

discrepancy, we take the raw result of the parameter estimator and project it onto the set ®. To find

this set we plot the discrete-time plant parameters a,, a, and b, for the 101 grid points discussed in
Subsection 9.2.1. Since these three parameters vary with only two variables, { and ®,, the set ©
is a 2-dimensional surface in R3. The 101 grid points are shown in Figure 9.23. We also show,
for perspective, a prism that contains ©. To project the raw parameter vector estimate onto the set

© we will choose the grid point in © that is closest to the parameter vector estimate in the sense of
the following measure of distance,

Distance = V[ (a;," - a;)/ A2y P +[ (a," - 3)/Aay P+[ (b, - b /Aby 12 (9.2.36)
where the 'starred' quantities represent the elements of the parameter vector at a grid point and

Aa; =0.26501, Aa,y = 0.23546 and Ab, = 0.54354 (9.2.37)

This measure of distance normalized the individual parameter distances by the maximum variation
of that parameter over the 101 grid points. This is a simple first-order correction to compensate for
the fact that some parameters vary more than others.
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Figure 9.23: The Parameter Space ® with 101 Grid Points.
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9.3 Open-loop Simulations of the Time-domain Parameter Estimator

In this section, we will present our simulation results of the dead-zone based, time-domain
parameter estimator of Chapter 4. Specifically, we will simulate the time-domain parameter
estimator in three situations: 1) an ideal case, 2) an unmodeled dynamics only case, and 3) a
disturbance only case. Later, in Section 9.5, we will simulate the robust estimator that uses the
time-domain parameter estimator, in the presence of "both" unmodeled dynamics and a disturbance.
This simulation will be a logical follow-on to the simulations of the present section, in which we
examine the "individual" effects of unmodeled dynamics and a disturbance. In Chapter 8, we
simulated the time-domain bounding mechanism that is used in the robustified time-domain
parameter estimator that we study in this section. Recall that the time-domain parameter estimator is
one of the two ways that we can generate parameters for the nominal model.

The main purposes of the following simulations are: 1) to see how tight the time-domain
bounds on the various equation error signals are, and 2) to see how the individual effects of
unmodeled dynamics and a disturbance degrade the performance of the time-domain parameter
estimator relative to the ideal case. One of the major conclusions of this section, is that the
dead-zone based time-domain parameter estimator performs poorly in the presence of the relatively
mild case of unmodeled dynamics that is used here. This is discussed further in the conclusions.
Before we present the actual simluation results, we must complete the preparations for the
time-domain parameter estimator.

9.3.1 Preparation for the Time-domain Parameter Estimator

In this subsection, we will complete the preparations and a priori calculations for the
time-domain parameter estimator of Chapter 4. Specifically, we will compute the various
frequency and time domain bounding functions that are required by the time-domain parameter
estimator. In addition, in this subsection we modify the parameter estimator to include a priori
knowledge of the continuous-time plant.

Off-line Computation of f-I_d @jka)

Recall that _ﬁd(ejka) is the magnitude bounding function on the transfer function from the

disturbance d[n] to the equation error ¢ [n]. Using Eqns. (3.6.4) and (9.2.4), we find that

Az9)=1-a,z!-2, z2 (9.3.1)
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and from Eqns. (4.3.3) and (9.2.13)

Hy(z.0) = Az0) Fz) = 0.052881 (z?-2a,z-3,)
z2 -1.64799 z + 0.70087 (9.3.2)

where a, and a, are parameters in the vector 6 that vary according to Eqns. (9.2.5-6). The
magnitude bounding function on ﬁd(ejka), which was defined in Eqn. (4.3.5), was computed

by finding the maximum magnitude of lHd(ejka,e)l at each frequency over the 101 point
parameter grid that was described in Subsection 9.2.1. Thus, we had to compute (N/2)+1=501

maximums, each being a maximum over 101 points. The bounding function ﬁd(ej")kT) is shown

in Figure 9.24. Noting that the vertical scale in this figure doesn't begin at zero, we see that the
bounding function doesn't change much with frequency, since it is always between 0.53 and 0.60.

Thus, the error signal e,[n] will be approximately a scaled version of the disturbance d[n].
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Figure 9.24: Frequency-domain Bounding Function ﬁd(ej"’kT).
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Off-line Computation of the Impulse Response Bounding Function Fd[gl

Recall that 'h_d[n] is the bounding function on the impulse response from the disturbance d[n]
to the equation error e;[n]. From Eqn. (9.3.2) we find that the impulse response hq[n,6], which
corresponds to the transfer function Hy(z,0), is given by

hg(n,8] = 0.052881 { 8[n] + 6.75685 [ ( 1.64799 - 2, ) (0.83718)" sin( 0.17772n ) u_y[n-1]
+ (-0.70087 - a, ) (0.83718)™D) §in(0.17772 (n-1) ) u 4 [n-2] 1 } (9.3.3)

where 8[n] and u_;[n-1] denote the unit impulse and unit step, respectively. For the parameter

variations described in Subsection 9.2.1, it can be shown that

a) € [1.61716, 1.88217] and a, € [-0.90436, -0.66890]. (9.3.4)
Using Eqns. (9.3.3-4) we find that

lhg[n,6]l < 0.052881 &[n] + 0.17052 (0.83718)™ u_;[n-1]. ‘ (9.3.5)

This bounding function is not very tight so we will use some of the cases that were described in
Subsection 9.2.4 to find a tighter bounding function. Consider the two cases:

Case A: {=02and o, =2 rads/sec. = a, =1.84458 and a, =-0.90436 9.3.6)
CaseB: (=0.8andw, =1rad/sec. = a;=1.80358 and a, =-0.81786 9.3.7)

Case A corresponds to the nominal model parameters for Cases 1-3 of Subsection 9.2.1 and Case
B corresponds to the nominal model parameters for Case 4 of Subsection 9.2.1. In Figure 9.25,

we show h4[n,0] for Cases A and B, along with the empirically chosen bounding function Fd[n]

where

lhg[n,6]! < hyln] = gp?, forn>0, (9.3.8)
and

£=0.06 and p=0.83718 (9.3.9)
Thus, this bounding function is valid for all of the cases that we will be simulating. It is about a
factor of 3 smaller than the bounding function that is computed via Eqn. (9.3.5).
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Figure 9.25: Impulse Response h[n,0] for Cases A and B, and Bounding Function Fd[n].

(E_d[n] and -Fd[n] =——, hg4[n,0] for Case A=----, hy[n,0] for Case B =....... )

Off-line Computation of the Error Bound ;—3[1;1

The constant ;,, that bounds the steady-state effect of the disturbance in the error signal e, [n]

is computed using Eqn. (4.3.13). To compute this bound we use the bounding function ﬁN(mk)

for N=N,=20, which can be empirically generated as was described in Subsection 9.2.7. Eqn.
(4.3.13) yields

€3=0.130760 * dpycior (9.3.10)

We can bound the remainder term of Eqn. (4.3.13) using Eqns. (4.3.12), (9.2.32) and (9.3.8-9),
as shown.

2d.c 2 Dglpl <2+ dgycror * 006 (0.83718)20 /(1 - 0.83718) = 0.021079  dgyeror
p=N; (9.3.11)
So, the remainder term is about a sixth of the value of the steady-state bound.itself.




Chapter 9 Page 230

The time-varying bound ?_,,[n] that is used during the start-up period from n=0 to N;-2 is

computed off-line using Eqn. (4.3.11). It can then be stored for use on-line. To compute this
time-varying bound we use the family of bounding functions, BN+n(mk), corresponding to n=0 to

N;-2, which can be empirically generated as was described in Subsection 9.2.7.

Off-line Computation of the Bounding Function ﬁu@jmk'r)

Recall that ﬁu(cjwkT) is the magnitude bounding function on the transfer function from the

input u[n] to the equation error e,[n]. This bounding function is used to compute a bound on the

effect of the unmodeled dynamics on the equation error. Using Eqns. (3.6.3) and (9.2.4), we find
that

B(z,0) =by z'1 + b; 22 (9.3.12)
and from Eqns. (4.4.1) and (9.2.13),

Hy(z,0) = B(z,0) F(z) 8,(z) = _0.052881 (byz +b;) §,(2).

22 -1.64799 z + 0.70087 (9.3.13)
where by and b; are parameters in the vector 0 that vary according to Eqns. (9.2.7-8). As for ﬁd’
we compute the magnitude bounding function on ﬁu(ej"’kT), which was defined in Eqn. (4.4.3),
by finding the maximum magnitude of IHu(ejwkT,e)l at each frequency over the 101 point

parameter grid described in Subsection 9.2.1. The bounding function ﬁu(ejka) is shown in
Figure 9.26.
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Figure 9.26: Frequency-domain Bounding Function ﬁu(ej T,

Off-line Computation of the Impulse Response Bounding Function h, [n]

Recall that Fu[n] is the bounding function on the impulse response from the input u[n] to the

equation error e, [n]. This bounding function is used to compute a bound on the effect of the

unmodeled dynamics on the equation error. We must find a magnitude bound on the impulse

response hy[n,0] corresponding to the transfer function H;y(z,8). Instead of using the results of

Subsection 4.4.2, which will yield a conservative bound, we will again make use of the cases that
were described in Subsection 9.2.4. In Figure 9.27, we show hu[n,e] for Cases 2-4, along with
the empirically chosen bounding function Fu[n] where

lhy(n,0]l < hyln] = gp?, forn>0, | (9.3.14)
and

g=0.015 and p=0.83718 (9.3.15)

This bounding function is valid for all of the cases that we will be simulating.
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Figure 9.27: Impulse Response h;[n,8] for Cases 2-4, and Bounding Function Hu[n].

(‘hy[n] and -hy[n] = ——, hy[n] for Case2 = ----, h[n] for Case 3= —-—,
| hy[n] for Case 4 = ........ )

Preparation for the On-line Computation of the Time-varying Error Bound gzml

The time-varying bounding function gz[n] that bounds the effect of the unstructured

uncertainty in the error signal e;[n], is computed on-line using Eqn. (4.4.23). The bounding

function of Figure 9.26 and the magnitude of the input signal DFT, UNn(O)k), which is computed

on-line, are used to compute the time-varying bound. We can bound the remainder term of Eqn.
(4.4.23) using Eqn. (9.3.14-15), the facts that up,,,=1 and N;=20, and the results of Appendix C

as shown.

2Umax 2 hylp] <2+ 0.015 (0.83718)20 /(1 - 0.83718) = 0.0052698 (9.3.16)
P=Nt

This remainder term is small compared to the values of the time-varying bound gz[n] that we will
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observe in the simulations. The on-line computational requirements for computing E_Z[n] are quite
small compared to the requirements of the frequency-domain bounding part of the robust estimator.
With reference to Eqn. (4.4.23), we only have to perform about Ny/2=5 multiplications and
additions at each sample time. Of course, we also must compute the N;-point DFTs of the input

and output signals; however, these computations are easily implemented using the recursion of
Eqn. (2.1.11).

Modification of the Time-domain Parameter Estimator Based on a priori Information

The time-domain parameter estimator that was described in Chapter 4 could be used to find

estimates of the four parameters, a;, a,, b, and b,. However, from our problem description of

Subsection 9.2.1, we know that the D.C. gain of the nominal plant GS(s,8°) is unity for all 8 in

®F. Further, since the high-frequency unmodeled dynamics are assumed to have no effect on the
D.C. gain of the plant in our problem, we see that the D.C. gains of the continuous and -
discrete-time plants are unity. This means that the four parameters of the discrete-time plant are not
independent. Using Eqn. (9.2.4) and the fact that G(z)=1 for z=1, we know that

b1= 1 ‘al 'az‘bo (9.3.17)
as was previously noted in Eqn. (9.2.8). This a priori known constraint allows us to use a
parameter estimator that only estimates the three parameters, a,, a, and b,. We will now derive a

modified form of the linear regression equation that describes the plant by incorporating this
constraint. Using Eqns. (4.2.17) and (9.3.17), we see that -

yeln] = 0n-11T0, + e;[n] = a; ygln-1] +a, yln-2] + by ugln-1] + b; ugln-2] + ¢;[n]

=2a; (yfln-1] - ufn-2] ) + a, (y¢ln-2] - ugln-2] ) + by (ugln-1] - ugn-2] ) + ugn-2] + ¢, [n].

(9.3.18)
Rewriting this equation yields

(yfln] - ugin-2] ) =

a; (ygln-11 - ufn-2] ) + a, (yfn-2] - ugn-2] ) + by (ugln-1] - udn-2]) + e;[n] (9.3.19)

which can be expressed as

Yemln] = 0, [n-11T0,  +€;(n] (9.3.20)

where
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Yfml[n] = y¢n] - ugn-2] (9.3.21)
Ognln-11=[ (yfln-1] - ugn-2]) (yfn-2] - ugln-2]) (ugln-1] - ugn-2]) 1T (9.3.22)
Oom =[2; a5 by1T (9.3.23)

and where the subscript 'm' stands for ‘modified' form of the parameter estimator. In the
following simulations the modified linear regression of Eqns. (9.3.20-23) will be used. For the
sake of clarity we will drop the subscript ‘'m' notation throughout the discussion of the following
simulations. That is, in the various figures the modified output of Eqn. (9.3.21) and the modified

parameter vector of Eqn. (9.3.23) will be referred to as y¢{n] and 90, respectively.

Choice of Algorithm Constants for the Time-domain Parameter Estimator

In the dead-zone based, time-domain parameter estimator of Chapter 4, there are several
constants that must be chosen. With reference to the algorithm of Section 4.5, we choose a=0.50
and, hence, B=1.4142. The constant o multiplies the additive update to the parameter vector
estimate so we call it the adaptation gain. The constant B multiplies the dead-zone width. The
larger B is, the less often the parameter estimates are updated. As discussed in Remark 1 of Section
4.5, we choose these values as a result of a trade-off between the adaptation gain o and the size of

the dead-zone as controlled by the parameter B. In the regularized constant trace modification to the

least-squares algorithm, which is described in Subsection 4.5.3, we choose the constants cp=10

and c1=30.

Subsection Summary

In this preparatory subsection, we have developed all of the necessary bounding functions
and computed all of the necessary quantities for use of the robustified time-domain parameter
estimator of Chapter 4. In the following subsections we will use this information to simulate the
parameter estimator.
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9.3.2 Simulations of the Time-domain Parameter Estimator

In this subsection, we will simulate the time-domain parameter estimator of Chapter 4 using
the modification discussed in Subsection 4.5.3. Thus, we simulate the robustified least-squares
parameter estimator with the regularized constant trace modification. The chirp-like input signal
u[n] of Subsection 9.2.8 will be used in all of the simulations in this subsection. We shall perform
simulations of the time-domain parameter estimator for three cases: 1) ideal case, with no
disturbance or unmodeled dynamics, 2) unmodeled dynamics only case, with no disturbance, and
3) disturbance only case, with no unmodeled dynamics. The case of both unmodeled dynamics
and a disturbance will be simulated later, in Subsection 9.5.2, when we consider the robust
estimator as a whole.

Simulation 9.3.1: Ideal Case, No Disturbance, No Unmodeled Dynamics

For this simulation we will use Case 1 of Subsection 9.2.4, and will not introduce any
disturbance. This situation of no unmodeled dynamics and no unmeasurable disturbance provides
us with a baseline by which to judge the performance and behavior of the later simulations which
will include the effects of unmodeled dynamics and an unmeasurable disturbance. In this ideal
case, we set-up the parameter estimator using the knowledge that the error signal e;[n] is always
zero. Thus, the dead-zone mechanism is not used in the algorithm for this simulation.

For clarity of presentation, we define the individual parameter errors. Keeping with the

notation of our-definition of 'é'[n] in Egn. (4.5.4), we define

ay[n] = a,[n] - a, ' (9.3.24)
a,[n] = ay[n] - a, (9.3.25)
Byln] = byln] - by 9.3.26)

where the 'hatted’ variables represent the estimates. We now present our results.

In Figure 9.28, we show the input signal u[n] and the output signal y{n]. We note the large
amplitude of the plant output when the input signal excites the resonance at 2 rads/sec. Beyond 15
secs., as the input signal frequency increases, the plant output response decreases in size, as
expected. For the initial parameter estimates we used the values that correspond to the choice of

£=0.8 and mn=1 rad/sec. These values are quite different from those of the true simulation plant,

which are {=0.2 and o, =2 rads/sec. In Figure 9.29 we show the parameter errors as defined
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above. For reference, we list the true values, initial estimates and initial errors of the parameters.
In addition, we show the parameter errors at n=200 (25.13 secs.) and n=2500 (314.16 secs.).

Table 9.1: Parameter Estimates of the Time-domain Algorithm for the Ideal Case.
6101

~

[+2 | l 0[0] | 0[200] I [2500]
a;,_ | 184458 | 1.80358 | -0.04100 | 0.00488 | 0.0
a, | -090436 | -0.81786 | 0.08650 |1 -0.00257 | 0.0
by | 062189 | 007834 | 054355 | -0.00234 | 0.0

From Figure 9.29, we see that the parameter errors almost reach zero in 25 seconds. The
simulation was run for a total of 314 seconds at which time the parameters had converged to zero,
to within the numerical accuracy of the simulation. This simulation shows us how well the
parameter estimator works for the ideal case of no disturbance and no unmodeled dynamics.

8.0

1.0

0.0
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~-4.0

-8.0

0.0 5.0 10.0 15.0 20.0 25.0
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Figure 9.28: Parameter Estimator Simulation, u[n] and y[n] for Ideal Case.
(uln]=—, y[n] =----)
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Figure 9.29: Parameter Errors for Ideal Case.

Simulation 9.3.2: Unmodeled Dynamics Case, No Disturbance

For this simulation we will use Case 3 of Subsection 9.2.4 and will not introduce any
disturbance. That is, we use the case of time-delay unmodeled dynamics but no disturbance, so
that we can isolate the effect of the unmodeled dynamics alone. For this simulation, we set-up the

parameter estimator using the knowledge that the error signal e;[n], due to the disturbance, is

always zero. Thus, the dead-zone mechanism is used only to bound the effect of unmodeled
dynamics for this simulation. We now present our results.

The 0.04 sec. time delay has only a small effect on the plant output. The time histories of
the input signal u[n] and the output signal y[n] are almost the same as those of Figure 9.28 and for
this reason they are not shown. For the initial parameter estimates we again used the values that

correspond to the choice of {=0.8 and o, =1 rad/sec. In Figure 9.30, we show the parameter

errors. For reference, we list the true values, initial estimates and initial errors of the parameters.
In addition, we show the parameter errors at n=200 (25.13 secs.) and n=2500 (314.16 secs.).
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Table 9.2: Parameter Estimates of the Time-domain Algorithm for the Unmodeled Dynamics Case.

I 04 | 0[0] I 0[0] | 6[200] | 98[2500]
a,_| 184458 | 180358 | -0.04100 | 0.01115 | 0.02172
a, | -090436 | -0.8178 | 008650 | -0.01921 | -0.02789
by | 062189 1 007834 | -054355 | -0.37421 | -0.32506

Comparing Figures 9.29 and 9.30, we see that the parameter errors are quite large for the present
simulation. Later, in the simulation of the robust estimator with the time-domain parameter

estimator (see Section 9.5.2), we will see that the large estimation error for the b parameter does
indeed matter in the sense that it results in large frequency-domain errors. The above table shows
that, even after a long time, the parameter estimates are still poor. We can understand this poor
performance by looking at the operation of the dead-zone mechanism.

In Figure 9.31, we show the magnitude bound gl[n] and the actual error signal e;[n], which
is due entirely to the effects of unmodeled dynamics in this simulation. This figure reveals that the
time-domain bounding mechanism is conservative. To provide a broader view of the operation of
this time-domain bounding mechanism, we present Figure 9.32, which shows the magnitude
bound -é_l[n] and the actual error signal e;[n] for a duration 10 times longer than Figure 9.31. In
this figure, the dips in the magnitude bound occur just after the input signal has the same period for

at least N, time samples. In this situation, the time-domain bounding mechanism sees a pure

fundamental frequency resulting in a tight bound. In Figure 9.33, we show both the prediction

error ¢[n] and the threshold signal B?l [h]. The dead-zone signal v[n] of Subsection 4.5.2, is

shown in Figure 9.34. Comparing Figures 9.33 and 9.34, we see how the dead-zone signal is
nonzero only when the magnitude of the prediction error e[n] is larger than the threshold signal

Ba[n]. Figure 9.34 shows us that the parameter estimator is turned off almost all of the time.

Since the parameters are updated for only a few short time intervals, it is not surprising that the
parameter estimator yields poor parameter estimates. This simulation reveals the poor performance
of the dead-zone based parameter estimator for even a relatively mild case of unmodeled dynamics.
It appears that the conservativeness of the time-domain bounding mechanism is a major contributor
to this poor performance.
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Figure 9.30: Parameter Errors for Unmodeled Dynamics Alone Case.
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Figure 9.31: Error ¢,[n] and Bound gl[n] for Unmodeled Dynamics Alone Case, Short Plot.
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Figure 9.32: Errbr ¢,[n] and Bound —e_l[n] for Unmodeled Dynamics Alone Case, Long Plot.

(ey[n]=——, e;[n]and-¢;[n] =----)

These figures show us the conservatism of our time-domain bound on le;[n]l, for this case.
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Figure 9.33: Prediction Error e[n] and Threshold B:l [n] for Unmodeled Dynamics Alone Case.
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Figure 9.34: Dead-zone Signal v[n] for Unmodeled Dynamics Alone Case.
The dead-zone signal is nonzero only when the magnitude of the prediction error is greater than the

threshold signal.
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Simulation 9.3.3: Disturbance Case, No Unmodeled Dynamics

For this simulation we will use Case 1 of Subsection 9.2.4, and will introduce a
disturbance. That is, we use the case of no unmodeled dynamics, so that we can isolate the effect
of the disturbance alone. For this simulation, we set-up the parameter estimator using the

knowledge that the error signal e,[n], due to the unmodeled dynamics, is always zero. Thus, the

dead-zone mechanism is used only to bound the effect of the disturbance for this simulation. The
disturbance that was described in Subsection 9.2.6 will be used in this simulation with a scaling

factor of df,yop=0.1. This is a small disturbance signal as can be seen from Figure 9.19, since for

the first 25 secs. the disturbance magnitude doesn't even exceed 0.06, including the scaling factor.
Recall that the input signal u[n] has unity magnitude. We now present our results.

The disturbance has only a small effect on the plant output, so the time histories of the input
signal u[n] and the output signal y[n] are again almost the same as those of Figure 9.28. For the

initial parameter estimates we again used the values that correspond to the choice of {=0.8 and

(on=1 rad/sec. In Figure 9.35, we show the parameter errors. For reference, we list the true

values, initial estimates and initial errors of the parameters. In addition, we show the parameter
errors.at n=200 (25.13 secs.) and n=2500 (314.16 secs.).

Table 9.3: Parameter Estimates of the Time-domain Algorithm for the Disturbance Case.

| 0. | [0 | 6[0] | O[2001 | 6[2500]
a;_ | 184458 | 1.80358 | -0.04100 | -0.02261 | 0.00681
a, | -090436 | -0.81786 | 0.08650 | 0.00255 | -0.00822
by, | 062189 | 007834 | -0.54355 | -0.16399 | -0.09797

Comparing Figures 9.29 and 9.35, we see that the parameter error is small for each of the
parameters a, and a,, but is still relatively large for b;. The above table shows that even after a
long time, the parameter estimate of by, is still not good. To gain insight, we investigate the

operation of the dead-zone mechanism.

In Figure 9.36, we show the magnitude bound E-l[n] and the actual error signal ¢, [n], which

is due entirely to the effects of the disturbance in this simulation. This figure reveals that the
disturbance bound introduces considerable conservatism for this simulation. In Figure 9.37, we

show both the prediction error e[n] and the threshold signal B:l [n]. The dead-zone signal v[n] is

shown in Figure 9.38. Comparing Figures 9.37 and 9.38, we again see how the dead-zone signal
is nonzero only when the magnitude of the prediction error e[n] is larger than the threshold signal
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B—e_l[n]. Figure 9.38 shows us that the parameter estimator is turned off for much of the time but

not nearly as much as in the case of the previous simulation. Since the bound ?1 [n] is overly
conservative, the dead-zone disables the parameter estimator when there is still useful information
in the input/output data. This simulation shows that the parameter estimator can perform marginally
well when the disturbance is small.
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Figure 9.35: Parameter Errors for Disturbance Alone Case.
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Figure 9.36: Error e[n] and Bound a[n] for Disturbance Alone Case.
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This figure show us the conservatism of our time-domain bound on le;[n]l, for this case.
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Figure 9.37: Prediction Error e[n] and Threshold B?l[n] for Disturbance Alone Case.
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Figure 9.38: Dead-zone Signal v[n] for Disturbance Alone Case.
_ The dead-zone signal is nonzero only when the magnitude of the prediction error is greater than the
threshold signal.
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9.3.3 Conclusion

In this section, we have studied the properties of the dead-zone based, time-domain
parameter estimator, through the use of several simulations. We have examined the individual
effects of unmodeled dynamics and a disturbance on the time-domain parameter estimator. Later,
in the robust estimator simulation of Subsection 9.5.2, we will simulate the time-domain parameter
estimator in the presence of both unmodeled dynamics and a disturbance. The understanding that
was gained in the present section will help us to understand this later simulation of the complete
robust estimator using the time-domain parameter estimator. We summarize our conclusions
concerning the simulations of the present section.

1) The time-domain parameter estimator is frequently ‘turned-off' for even a relatively mild

case of unmodeled dynamics, thus resulting in poor parameter estimates.

2) The time-domain bounding mechanism can be very conservative in the case of a

pseudo-random type of disturbance. Thus, the resulting disturbance bound will be

conservative and will result in degraded parameter estimates.
The most important of these conclusions is the one concerning the poor performance of the
dead-zone based parameter estimator for mild cases of unmodeled dynamics. It is the author's
opinion that there exist some inherent difficulties with using a dead-zone approach to guard against
the effects of unmodeled dynamics. Since the effects of the unmodeled dynamics vary greatly with
frequency, it seems more appropriate to try to weed out their effects using a frequency-domain
approach. To further justify this viewpoint, we present the following thought experiment.

Consider a disturbance-free situation in which the plant input signal contains some small
sinusoidal component that produces some small sinusoidal component in the plant output signal.
We assume that there are other, larger components of the input signal that drive the time-domain
bounding mechanism of the parameter estimator, thus resulting in some large error bound. The
large error bound will disable the parameter estimator. That is, the time-domain contribution of the
small sinusoid is smaller than the time-domain signal due to the interaction of the total input signal
with the unmodeled dynamics. However, a frequency transform of the data can still provide useful
information at the frequency of the small sinusoidal component. Thus, from the point of view of
the dead-zone based parameter estimator there is no useful information in the input/output data, but
from a frequency-domain viewpoint there is. These arguments help justify our choice of the
frequency-domain parameter estimator of Section 5.4 over the dead-zone based parameter estimator
that was simulated in this chapter. Later, our simulation results for the frequency-domain
parameter estimator will further justify this choice.

As a final note we emphasize that the dead-zone based parameter estimator is only one type
of time-domain parameter estimator. We do not mean to imply that time-domain techniques are
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inferior to frequency-domain techniques. We are only saying that the dead-zone based parameter
estimator doesn't perform well, in our simulations.

9.4 Open-loop Simulations of the Frequency-domain Uncertainty Bounding
Method

In this section, we will simulate the frequency-domain bounding method that was developed
in Chapter 5. Specifically, we will implement the part of the robust estimator that generates the
multiplicative uncertainty bounding function. However, we will use the actual values of the
parameters in the nominal model. That is, the simulations of this section show how the robust
estimator would work if the parameter estimator always gave the true parameters. Later, this will
allow us to see how much conservatism is due to the frequency-domain bounding method itself,
and how much is due to the parameter estimator. We will see that for our choices of the DFT

length N¢ and the memory length M, the frequency-domain bounding function yields a

multiplicative uncertainty bounding function that is much less than unity and, hence, is useful for
updating the control-law in a closed-loop adaptive control context. That is, we will see that the
frequency-domain bounding method performs well. Before presenting the simulation results, we
must take care of some preparations for the frequency-domain bounding method.

9.4.1 Preparation for the Freguency-domain Uncertainty Bounding Method

In this subsection, we will completé the preparations and a priori calculations for the
frequency-domain uncertainty bounding method of Chapter 5. Specifically, we will compute the
various frequency and time-domain bounding functions that are required by the frequency-domain
uncertainty bounding method.

Computation of the Error Bounding Function

The error bounding function of Eqn. (5.2.4) will be computed using the on-line computed

DFT of the input signal, UNn(cok), and the bounding function on the impulse response of the true

plant, which is given by Eqns. (9.2.26-7). Recall that Eqn. (5.2.4) is the key equation that is used
to compute the frequency-domain bounding function. The remainder term of Eqn. (5.2.5) is
computed using Eqns. (9.2.26-7), the fact that u, =1, and the results of Appendix C. Thus, the

remainder term is given by
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Erem =2Upmax Z i guuelil =2gPMM-Mp+p)/(1-p)2 (9.4.1)

1=

where from Eqn. (9.2.27), g=0.75 and p=0.95098. This remainder term is shown in Figure 9.39

as a function of the memory length M. In addition, we present the following table for the larger
values of M.

Table 9.4: The Remainder Term Erem as a Function of the Memory Length M.

M| E

1 |__593.59381

100 | 23.97108

| 125 | 8.25089
| 150 | 2.75484
| 175 | 0.89977
& 200 028901
| 225 I 0.09163
250 | 0.02874

! } 275 | 0.00894
300 L 0.00276

For the open-loop simulations of this section, we use M=175 which corresponds to a remainder
term of 0.89977. As mentioned previously, this remainder term looks like a constant disturbance
over all frequencies, to the frequency-domain estimator.

UNITS
0.0 100.0 200.0 300.0 400.0 500.0 600.0

i

1

1 1 1
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Figure 9.39: Remainder Term —E_rem as a Function of the Memory Length M.
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Computation of the Interval form of the Smoothness glqngig'gn_Vsu,inﬁmkmkH)

The bounding function Vsun(ejka) will be computed on-line. Recall that this bounding

function is used to both smooth out sharp peaks in the raw uncertainty bounding function and to
compute the additive safety factor that guards against inter-sample variations. The methods of

Subsection 5.7.2 will be used to compute the bounding function Vsun(ejka); however, to

compute the interval form of the smoothness condition V “((Dk,(ok +1) we must use an

su,l
approximation to Eqn. (5.7.31). Since we are using a large number of frequency points in this
simulation, little error is introduced by the following approximation.

Vsu,in(wk,‘“kﬂ) = max{Vsun(ei‘DkT), Vsun(ei‘”kHT)} = sup { Vsun(ei“)T) )
e [0, 04 1] (9.4.2)

Subsection Summary

In this preparatory subsection, we have developed all of the necessary bounding functions
and computed all of the necessary quantities for use of the frequency-domain uncertainty bounding
method of Chapter 5. In the following sections of this chapter, we will use this information to
simulate the frequency-domain bounding method. |

9.4.2 Simulation of the Frequency-domain Uncertainty Bounding Method with True Parameter
Estimates

In this subsection, we will simulate the frequency-domain uncertainty bounding method of
Chapter 5 using the "true" parameters, not estimates. That is, instead of using a parameter
estimator, we use the true parameter values which we know from the start in this controlled
situation. This approach will allow us to evaluate the performance of the frequency-domain
bounding method independently of the performance of the parameter estimator. In this subsection,
we simulate the main method of Chapter 5, including the smoothing computations of Section 5.7
and the addition of the safety factor that was described in Section 5.8. We do not implement any of
the modifications with regard to the robust uncertainty bounding discussion of Subsection 5.6.3.
The input signal u[n] of Subsection 9.2.8 will be used in all of the simulations in this subsection.
We shall perform simulations of the frequency-domain bounding method for two cases in this
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section: 1) ideal case, with no disturbance or unmodeled dynamics, and 2) disturbance only case,
with no unmodeled dynamics. Later, in Section 9.5, the complete robust estimator will be
simulated.

Simulation 9.4.1: Ideal Case, No Disturbance, No Unmodeled Dynamics

For this simulation we will use Case 1 of Subsection 9.2.4 and will not introduce any
disturbance. In this ideal case, we expect the frequency-domain bounding method to work very
well. With no disturbance, the only source of error with regard to our frequency-domain estimate
is the use of finite-length data. For initial values, we set the cumulative frequency-domain estimate

to the frequency response of the nominal model for {=0.8 and ®,=1 rad/sec., and set the

corresponding cumulative frequency-domain bounding function to the best bounding function that
can be found using only a priori knowledge of the plant. That is, we can find some large initial
bounding function on the frequency-domain error based on our assumptions concerning the
structured and unstructured uncertainty of the plant. Note that we start the frequency-domain

bounding method with parameter values that are very far from the true values of {=0.2 and 0, =2

rads/sec. We now present our results.

In this simulation, the time histories of the input signal u[n] and the output signal y[n] are the
same as those of Figure 9.28. As in Chapter 8, we will present the time histories of the
frequency-domain errror and error bound, at a given frequency. In Figure 9.40, we show the time

histories of the frequency-domain error bound, —éf,Nn(‘”k)’ and the actual error magnitude,

|Ef,Nn((Dk)|, at oy =2 rads/sec. In Figure 9.41, we show the same quantities for «} =20 rads/sec.

These figures show how the frequency-domain error bounding function decreases sooner for low
frequencies than for high frequencies in our example. This occurs because the input signal is a
low-frequency signal initially but then becomes an increasingly higher frequency signal for later
times. In Figures 9.40-41, there is a marked decrease in the bounds at n=999 (125.54 secs.) when
the first DFT frame of 1000 time samples is filled. Since the input signal has the same period as the

length of the DFT, the bounds remain constant after time index n=Ng-1+M-1=1173, or after
147.40 secs. These results show us that the frequency-domain bounding method yields its best
results after something on the order of Ng+M sample times have passed. This gives us an idea of

how fast the bounding method learns.

In Figure 9.42, we show frequency-domain snapshots of the cumulative frequency-domain
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error bounding function, Ecumf,Nn(“)k)’ and the actual error magnitude, IE¢yms N™(@)), for

n=999 (125.54 secs.). In Figure 9.43, we show the same functions for n=2500 (314.16 secs.).
From Figure 9.42, we see that the both the cumulative bounding function and the error function are
still quite large at n=999. However, from Figure 9.43, we see that at n=2500, both the cumulative
bounding function and the error function are small. In fact, the actual cumulative error function is
so small that it can't be seen on the scale of Figure 9.43. A comparison of Figures 9.43 and 9.22,
which shows the DFT magnitude of the input signal, reveals the expected result that we obtain the
best estimates at the frequencies where the input signal has the most energy.

We now present the final results of the frequency-domain uncertainty bounding method, the

bounding functions Asun(ejka) and Xsun(eiwkT) on ISSu(ejka)l. In Figure 9.44, we show the
raw bounding function Asun(ejka), which is defined by Eqn. (5.5.6), for n=2500 (314.16
secs.). In Figure 9.45, we show the final bounding function Ksun(ej“’kT) for n=2500 (314.16

secs.), after the smoothing of Asun(ej“’kT) and the addition of the safety factor, as described in

Sections 5.7-8. Comparing Figures 9.44 and 45, we see how the smoothing procedure has
removed the sharp peaks in Figure 9.44. Further, from this comparison, the addition of the safety
factor in Figure 9.45 is apparent, particularly in the frequency range from O to 2.5 rads/sec. These
results show us how well the frequency-domain bounding method works for the ideal case of no
disturbance and no unmodeled dynamics. The final bounding function is quite small being much

less than unity. This means that for our choice of Ny and M the frequency-domain bounding

method works very well.
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Figure 9.40: Time History of lEf,Nn(mk)l and Ef,N'n(“)k) for @ =2 rads/sec., and Ideal Case.
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Figure 9.41: Time History of IEf,N“((ok)l and Ef,Nn(mk) for ey =20 rads/sec., and Ideal Case.
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These figures show how fast the bounding method learns at different frequencies.
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Figure 9.44: Raw Uncertainty Bounding Function Asun(ejka) for n=2500, and Ideal Case.
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Figure 9.45: Final Uncertainty Bounding Function Xsun(ejka) for n=2500, and Ideal Case.
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Simulation 9.4.2: Disturbance Case. No Unmodeled Dynamics

For this simulation we will use Case 1 of Subsection 9.2.4, and will introduce the

disturbance of Subsection 9.2.6 with a scaling factor of dg,.4o,=0-1. In this disturbance case, we

do not expect the frequency-domain bounding method to work as well as in the ideal case, in the
frequency range where the disturbance has its energy. We use the same initial values for the
frequency-domain method as in the previous simulation. We now present our results.

In this simulation, the time histories of the input signal u[n] and the output signal y[n] are
similar to those of Figure 9.28, since the disturbance is small. The time histories of the

frequency-domain error bound, ﬁf,Nn(cok), and the actual error magnitude, IEf,Nn(cok)I, are

qualitatively similar to those of the previous simulation so we do not show them. In Figure 9.46,
we show frequency-domain snapshots of the cumulative frequency-domain error bounding

function, Ecumf,Nnr(“)k)’ and the actual error magnitude, lEcumf,Nn(mk)" for n=2500 (314.16

secs.). Comparing Figures 9.43 and 9.46, we see that the functions are larger in the disturbance

case than in the ideal case of no disturbance, as expected. Comparing these two figures with the

disturbance DFT magnitude, which is shown in Figure 9.20 (not including the scaling factor of

0.1), we see how the disturbance corrupts the estimate primarily in the low-frequency range.
Now, for the disturbance case, we present the final results of the frequency-domain

uncertainty bounding method, the bounding functions Asu“(ejka) and _A_Slln(ejka) on
ISSu(ej ka)I. In Figure 9.47, we show the raw bounding function Asun(ej“)kT) for n=2500
(314.16 secs.). In Figure 9.48, we show the final bounding function Zsun(ejka) for n=2500

(314.16 secs.), after the smoothing of Asun(ejka) and the addition of the safety factor.

Comparing Figures 9.47-48, we see again how the smoothing procedure has removed the sharpest
peaks in Figure 9.47. The presence of the disturbance is most pronounced in the low frequency
range from O to 2.5 rads/sec. A comparison of Figures 9.45 and 9.48 reveals the degradation of
the uncertainty bounding function that is due to the presence of the disturbance. These results
show us how the disturbance affects the performance of the frequency-domain bounding method.
We note that, even in the presence of the disturbance, the final bounding function is smaller than
unity and, hence, useful.
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Figure 9.47: Raw Uncertainty Bounding Function Asu"(ejka) for n=2500, and Disturbance
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9.4.3 Conclusion

-In this section, we have studied the properties of the frequency-domain uncertainty bounding
method, through the use of two simulations. We have seen that the frequency-domain bounding
method performs well. We summarize our conclusions concerning these simulations.

1) In the disturbance-free case, the frequency-domain bounding method yielded a
multiplicative uncertainty bounding function that is much less than unity and, hence, useful for

control design. This verifies that our choices of M and N¢ are sufficiently large.

2) In the disturbance case, we saw how the low-frequency disturbance resulted in a larger
multiplicative uncertainty bounding function than in the disturbance-free case. This shows
how the presence of the disturbance affects the closed-loop bandwidth that is achievable using
the frequency-domain uncertainty bounding method.
These conclusions are encouraging and indicate that the frequency-domain uncertainty bounding
method holds promise. However, the robust estimator also includes a parameter estimator. The
results of this section show that, if 1) the parameter estimator yields the true parameter values and
2) the input signal is rich, such as in these simulations, then the frequency-domain bounding
method can yield a useful bounding function on the multiplicative modeling uncertainty. By useful
we mean a bounding function that is, for example, less than unity for frequencies that are lower
than the target closed-loop bandwidth. This will allow the robust adaptive control system to
increase the closed-loop bandwidth using the knowledge provided by the robust estimator.
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9.5 Open-loop Simulations of Both Types of the Robust Estimator
9.5.1 Introduction

In this section, we will simulate the robust estimator using both types of the parameter
estimator, one time-domain and one frequency-domain. This will provide a comparison of the two
kinds of parameter estimators. In Section 9.3, we saw that the dead-zone based time-domain
parameter estimator did not perform well in our simulations. We expect the frequency-domain
parameter estimator to perform better than the time-domain parameter estimator. A second objective
of this section is to see how the robust estimator (using the frequency-domain parameter estimator)
performs for several different types of unmodeled dynamics.

2 Simulation of the R Estimator using the Time-domain Parameter Estimator

In this subsection, we will simulate the robust estimator using the time-domain parameter
estimator of Chapter 4 and the modification discussed in Subsection 4.5.3. That is, we use the
robustified least-squares parameter estimator with the regularized constant trace modification. The
input signal u[n] of Subsection 9.2.8 will be used in this simulation. We simulate the robust
estimator in a situation where both unmodeled dynamics and a disturbance are present. This
simulation is the logical follow-on to the simulations of Section 9.3, where the effects of the
unmodeled dynamics and the disturbance were considered individually.

Simulation 9.5.1: Robust Estimator using the Time-domain Parameter Estimator, Case 3

For this simulation we will use Case 3 of Subsection 9.2.4, and will introduce a
disturbance. That is, we use the case of time-delay unmodeled dynamics. The disturbance that
was described in Subsection 9.2.6 will be used in this simulation with a scaling factor of

dfactor0-1. For initial values in the frequency-domain bounding part of the robust estimator, we

set the cumulative frequency-domain estimate to the frequency response of the nominal model for

{=0.8 and ©,=1 rad/sec., and set the corresponding cumulative frequency-domain bounding
function to the best bounding function that can be found using only a priori knowledge of the plant.
Thus, we start the frequency-domain bounding method with parameter values that are very far from
the true values of {=0.2 and ®,=2 rads/sec. We now present our results.

The 0.04 sec. ime delay has only a small effect on the plant output. The time histories of
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the input signal u[n] and the output signal y[n] are almost the same as those of Figure 9.28. For
the initial parameter estimates we again used the values that correspond to the choice of {=0.8 and

o,=1rad/sec. In Figure 9.49, we show the parameter errors. For reference, in Table 9.5 we list

the true values, initial estimates and initial errors of the parameters. In addition, we show the
parameter errors at n=200 (25.13 secs.) and n=2500 (314.16 secs.). In Table 9.6, we again show
the true parameter values and the values at n=2500; however, we also show the nearest grid point

9*, of the 101 grid points, that the estimate is projected to. In addition, we show the projected
parameter errors, that is, 8"[2500] = 8*[2500] - ,,

Table 9.5: Parameter Estimates of the Time-domain Algorithm for Case 3 and a Disturbance.

I 0, | 0[0] I 0[0] | 61200] | __6[2500]
a;_ | 184458 | 1.80358 | -0.04100 | 0.01910 | 0.02768
a, | _-090436 | -0.81786 | 0.08650 | -0.02353 _|_-0.03477
bp! 062189 | 007834 | -0.54355 | -0.43629 | -0.41353

Table 9.6: Projected Parameter Estimates of the Time-domain Algorithm for Case 3 and a

Disturbance.

] O | 625001 1 0125001 | Q [25001 | [2500]
a;__| 1.84458 | 1.87225 | 0.02768 |  1.88217 [ 0.03759
a8, | -090436 | -0.93913 | -0.03477 | -0.90028 | 0.00410
byl 0.62189 | 0.20836 | -041353 | 0.18132 | -0.44057

Comparing Figures 9.29 and 9.49, we see that the parameter errors are quite large for the present
simulation. The above tables show that even after a long time, the parameter estimates are still
poor. The projection onto the grid of 101 points doesn't help improve the parameter estimates
overall. To gain insight, we investigate the operation of the dead-zone mechanism.

In Figure 9.50, we show the magnitude bound ?1 [n] and the actual error signal €;[n], which
is due to both the effects of unmodeled dynamics and the disturbance in this simulation. The

components of the magnitude bound _c_l[n] and the actual error signal e,[n] are shown in Figures

9.51-52. Recall that €2[n] and -e_3[n] bound the effect of the unmodeled dynamics and the

disturbance, respectively. From these figures, we see that the unmodeled dynamics bounding

signal is the major component of Fl[n]. In Figure 9.53, we show both the prediction error e[n]

and the threshold signal B?l[n]. The dead-zone signal v[n] of Subsection 4.5.2, is shown in
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Figure 9.54. As before, by comparing Figures 9.53 and 9.54, we see how the dead-zone signal is
nonzero only when the magnitude of the prediction error e[n] is larger than the threshold signal

[3; [n]. Further, by comparing Figure 9.54 with Figures 9.34 and 9.38, which show the
1 gur

dead-zone signal for the previous cases, we see that in the present simulation the parameter
estimator is turned-off even more than in either of the previous two simulations of the time-domain
parameter estimator. As before, since the parameters are updated for only a few short time
intervals, it is not surprising that the parameter estimator yields poor parameter estimates. We now
present our frequency-domain results.

The cumulative frequency-domain error bounding function at n=2500 (314.16 secs.) is the

same for this simulation as it was in Simulation 9.4.1, where Ecumf,Nn(“)k) is shown in Figure

9.46. This is not surprising since the frequency-domain error bounding function depends only on

the input u[n] and the disturbance d[n]. In addition, the actual error magnitude, IEcumf,Nn((’)k)l’ is

also the same for this simulation as it was in Simulation 9.4.1. The additive error in the
frequency-domain and our bound on it, both depend only on the input signal and the disturbance,

not the plant. In Figure 9.55, we show the final bounding function Xsun(eka) for n=2500

(314.16 secs.), after the smoothing of Asun(eka) and the addition of the safety factor, as

described in Sections 5.7-8. This uncertainty bounding function is very large and would allow
only a very low closed-loop bandwidth to be achieved in a closed-loop adaptive control context.
The problem with the performance of the robust estimator in this simulation is the poor
performance of the dead-zone based parameter estimator. The frequency-domain bounding method
part of the robust estimator works well, but the dead-zone based time-domain parameter estimator
works so poorly that the resulting uncertainty bounding function is uselessly conservative.
Fortunately, as we will see in the next subsection, the frequency-domain parameter estimator works
much better than the dead-zone based parameter estimator.
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Figure 9.54: Dead-zone Signal v[n] for Robust Estimator.
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The dead-zone signal is nonzero only when the magnitude of the prediction error is greater than the

threshold signal.
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Figure 9.55: Final Uncertainty Bounding Function Ksun(e(”kT) for n=2500, Robust Estimator

using Time-domain Parameter Estimator, Case 3. Straight line is a priori bound A,.

9.5.3 Simulation of the Robust Estimator using the Frequency-domain Parameter Estimator

In this subsection, we will simulate the robust estimator using the frequency-domain
parameter estimator that was described in Section 5.4. The input signal u[n] of Subsection 9.2.8
will be used in all of the simulations in this subsection. In addition, the disturbance that was

described in Subsection 9.2.6 will again be used with a scaling factor of dgyor=0.1, in all of the

simulations in this subsection. Since the input u[n] and the disturbance d[n] are the same for all
three of the simulations of this section, the cumulative frequency-domain error bounding function at
n=2500 (314.16 secs.) is also the same. This error bounding function is also the same as it was in

Simulation 9.4.1, where Ecumf,Nn(“)k) is shown in Figure 9.46. In addition, the actual error

magnitude, 'Ecumf Nn(u)k)l, is the same for the three simulations of this subsection as it was in

Simulation 9.4.1. In this subsection, we simulate the robust estimator (using the
frequency-domain parameter estimator) for three different cases of unmodeled dynamics.
However, first we must choose the weighting function in the frequency-domain parameter
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estimator.,

Choice of the Frequency-weighting Function in the Frequency-domain Parameter Estimator

We must choose the frequency-weighting function f(w) that is used in Eqn. (5.4.13) to find
the diagonal frequency weighting matrix W. As was discussed in Section 5.4, if we wanted to
choose a weighting function that yields a least-squares fit between the cumulative
frequency-domain estimate and the true frequency-domain estimate, then we would choose the
function to be

1/1eH0T 5 lOT 4, 9.5.1)

where, of course, we don't know the true parameters a; and a,. Since there are high-frequency

unmodeled dynamics in our true plant, we want to de-emphasize the measured frequency-domain
information at high frequencies. Thus, ideally, we don't choose Eqn. (9.5.1) but, rather, we
choose a weighting function that has, for example, a single-pole roll-off above and beyond the two
pole roll-off of Eqn. (9.5.1). We choose

f(w) = 14 / (jo + 4)13. 9.5.2)
This weighting function will result in a better fit at low-frequencies than at high frequencies in the

frequency-domain parameter estimator. In Figure 9.56, we show this weighting function f(w).
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Figure 9.56: Weighting Function f() for Frequency-domain Parameter Estimator.
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Modification of the Frequency-domain Parameter Estimator Based on a Priori Information

The frequency-domain parameter estimator that was described in Section 5.4 could be used
to find estimates of the four parameters, a;, a,, by and b;. However, as was the case for the

time-domain parameter estimator (see Subsection 9.3.1), we can make use of a priori information
to modify the frequency-domain parameter estimator. From the problem description of Subsection
9.2.1, we know that the D.C. gain of the plant is unity. So, using Eqn. (9.2.4) and the fact that
G(2)=1 for z=1, we know that

b=1-2a,-a,-b, (9.5.3)
as was previously noted in Eqn. (9.2.8). This a priori known constraint allows us to use a
parameter estimator that only estimates the three parameters, a,, a, and by, We will now develop a

modified form of the frequency-domain parameter estimator of Section 5.4. Using Eqns. (5.4.3-4)
and (9.5.3), we find that

22G(z8y) -1 =[2G@8) -1 G(z8y)-1 z-1]1[a; a, bylT (9.5.4)
or .

22G(z8) -1 =[2G@z8) -1 G@z8)-1 z-116,, (9.5.5)
where

Oy =[ 21 35 bo1T (9.5.6)

and where the subscript 'm' stands for ‘modified' form of the parameter estimator. The definition
of Eqn. (9.5.6) is the same as that of Eqn. (9.3.23) for the modified time-domain parameter
estimator. The development of the modified frequency-domain parameter estimator proceeds the
same as the development of Section 5.4, except that Eqn. (9.5.5) is used in place of Eqn. (5.4.5).
In the following simulations, the modified frequency-domain parameter estimator will be used. For
the sake of clarity we will drop the subscript 'm' notation throughout the discussion of the
following simulations.

For this simulation we will use Case 3 of Subsection 9.2.4, which has time-delay

unmodeled dynamics, and will introduce a disturbance with a scaling factor of dg,,.=0.1. For

initial values in the frequency-domain bounding part of the robust estimator, we set the cumulative

frequency-domain estimate to the frequency response of the nominal model for {=0.8 and 0, =1
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rad/sec., and set the corresponding cumulative frequency-domain bounding function to the best
bounding function that can be found using only a priori knowledge of the plant. Thus, we start the
frequency-domain bounding method with parameter values that are very far from the true values of

=0.2 and @ =2 rads/sec. We now present our results.

Again, the 0.04 sec. time delay has only a small effect on the plant output. The time
histories of the input signal u[n] and the output signal y[n] are almost the same as those of Figure
9.28. The frequency-domain parameter estimator was actually used only at the end of the
simulation. In the following table we list the true parameter values, and the parameter estimates and
errors at n=2500 (314.16 secs.).

Table 9.7: Parameter Estimates of the Frequency-domain Algorithm for Case 3 and a Disturbance.

l 9, | 6125001 | 8250001 | 6¥[25001 | 8%[2500]
a1 184458 | 186098 | 001640 | 1.84458 1 0.0
a, | _-090436 | -0.92211 | -001775 | -0.90436_ | 0.0
by 106218 | 055545 | -006644 | 06218 | 0.0

In addition, we show the nearest grid point 6*, of the 101 grid points, that the estimate is projected
to. Since the resulting grid point happens to correspond to the true parameter values for this

. . ok, .
simulation, the final parameter vector error 0 is zero. We now present our frequency-domain
results. '

In Figure 9.57, we show the final bounding function Ay, "€k T) for n=2500 (314.16

secs.), after the smoothing of A n(P,(‘)kT) and the addition of the safety factor, as described in
g Ol Agy

Sections 5.7-8. This uncertainty bounding function is much smaller than that of Figure 9.55 for
the robust estimator using the dead-zone based time-domain parameter estimator. This significant
difference is due to the superior performance of the frequency-domain parameter estimator as
compared with the dead-zone based one. The uncertainty bounding function of Figure 9.57 is
always less than unity and would be useful for increasing the bandwidth in a closed-loop adaptive
control context. '

A Comparison of the Dead-zone based Time-domain Parameter Estimator and the
Frequency-domain Parameter Estimator

The previous two simulations, Simulations 9.5.1 and 9.5.2, are the same except that the
dead-zone based time-domain parameter estimator has been used in the first simulation and the
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frequency-domain parameter estimator has been used in the second one. That is, we can compare
the parameter estimates of the two different types of parameter estimators for the plant of Case 3
with a disturbance. We summarize the results of these two simulations below where the data from
Tables 9.5-7 has been used.

Table 9.8: Comparison at n=2500 of the Parameter Estimates of the Time-domain and the
Frequency-domain Algorithms for Case 3 and a Disturbance.

| Time-domain | Freq.-domain | Time-domain | Freq.-domain
I | I

|
| 8[25001 | 825001 | 8%[25001 1 8%2500]
a;_ 1l 002768 | 001640 | 0.03759 | 0.0
1 -003477 | -0.01775 | 0.00410 | 0.0
by | -041353 | -0.06644 | -0.44057 | 0.0

In this table, we see that at the end of the simulations, the raw parameter errors 8[2500] of the
dead-zone based time-domain parameter estimator are much larger than the raw estimates of the
frequency-domain parameter estimator. In addition, we see that the errors of the projected

parameter estimates §*[2500] of the dead-zone based time-domain parameter estimator are also

much larger than the raw estimates of the frequency-domain parameter estimator. In particular, we
note that the dead-zone based parameter estimator yields a very poor estimate of the by, parameter,

as compared with the frequency-domain parameter estimator.

These results tell us that over a long period of time, the frequency-domain parameter
estimator is likely to yield much better estimates. These results do not tell us how quickly the
frequency-domain parameter estimator arrives at its estimates as compared with the time-domain
parameter estimator. However, by construction, the frequency-domain parameter estimator
improves its estimates as fast as the robust estimator improves its frequency-domain estimate. That
is, the estimates of the frequency-domain estimator are found by performing a frequency-domain fit
to the evolving frequency-domain estimate of the plant. Thus, the speed of the frequency-domain
parameter estimator is as fast as it needs to be in the sense that it yields accurate estimates when the
frequency-domain bounding function becomes small.

Simulation 9.5.3: Robust Estimator using the Frequency-domain Parameter Estimator, Case 2

For this simulation we will use Case 2 of Subsection 9.2.4, which has second-order

unmodeled dynamics, and will introduce a disturbance with a scaling factor of dfy;o=0.1. We

use the same initial values for the frequency-domain method as in the previous simulation. We
now present our results.
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The second-order unmodeled dynamics have only a small effect on the plant output. The
time histories of the input signal u[n] and the output signal y[n] are almost the same as those of
Figure 9.28. In the following table we list the true parameter values, and the parameter estimates
and errors at n=2500 (314.16 secs.).

Table 9.9: Parameter Estimates of the Frequency-domain Algorithm for Case 2 and a Disturbance.

I (o2 | 6125001 | 8125001 1 6¥[25001 | 8%[2500]
a,__| 184458 | 184961 | 000503 | 184458 | 00
a, | 090436 | -090966 | -0.00530 | -0.90436 | 0.0
by | 06218 | 0.60184 | -0.02005 | 0.62189 | 0.0

In addition, we show the nearest grid point 9*, of the 101 grid points, that the estimate is projected
to. Since the resulting grid point happens to correspond to the true parameter values for this

simulation, the final parameter vector error 8" is zero. Comparing the values of 8[2500], we see
that the parameter errors for this simulation are about a factor of 3 smaller than for the previous
simulation. This is because the second-order unmodeled dynamics have a smaller effect than the
time-delay unmodeled dynamics. We now present our frequency-domain results.

In Figure 9.58, we show the final bounding function Xsun(eka) for n=2500 (314.16

secs.), after smoothing and the addition of the safety factor. This uncertainty bounding function is
smaller than that of Figure 9.57 since again the second-order unmodeled dynamics are smaller than
the time-delay unmodeled dynamics, as can be seen in Figures 9.11-12. The uncertainty bounding
function of Figure 9.58 is always much less than unity and would be useful for increasing the
bandwidth in a closed-loop adaptive control context.

Simulation 9.5.4: Robust Estimator using the Frequency-domain Parameter Estimator, Case 4

For this simulation we will use Case 4 of Subsection 9.2.4, which has second-order

unmodeled dynamics, and will introduce a disturbance with a scaling factor of dg,(or=0.1. Recall

that Case 4 differs from Case 2 in that the nominal model parameters are different. For initial
values in the frequency-domain bounding part of the robust estimator, we set the cumulative

frequency-domain estimate to the frequency response of the nominal model for {=0.2 and ®,=2

rads/sec., and set the corresponding cumulative frequency-domain bounding function to the best
bounding function that can be found using only a priori knowledge of the plant. Thus, we start the
frequency-domain bounding method with parameter values that are very far from the true values of
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{=0.8 and ,=1rad/sec. We note that this is a different set of initial conditions than was used for

Simulations 9.4.1-2, and 9.5.1-3. This means that the cuamulative frequency-domain bounding
function will be different, initially, for this simulation than for the previous simulations. However,
for this simulation, the input signal is large enough so that the initial conditions make no
contribution to the the cumulative frequency-domain bounding function at n=2500 (314.16 secs.).

Thus, Ecumf,Nn(“)k) and 'Ecumf,Nn(“)k)I are the same at n=2500 as in Simulation 9.4.2. We

now present the rest of our results.

The time histories of the input signal u[n] and the output signal y[n] are shown in Figure
9.59. In the following table we list the true parameter values, and the parameter estimates and
errors at n=2500 (314.16 secs.).

Table 9.10: Parameter Estimates of the Frequency-domain Algorithm for Case 4 and a

Disturbance.
| 0 | 6[25001 | 8125001 | 625001 | 8%[2500]
a, | 180358 | 1.83871 | 0.03513 | 184111 | 0.03753
a, | 081786 | 085058 | -003272 | -0.85571 | -0.03785
by 007834 | 007709 | _-0.00125 | 010109 | _0.02275

In addition, we show the nearest grid point 9*, of the 101 grid points, that the estimate is projected
to. The projected parameter estimate doesn't yield the true parameter values in this simulation,
although the true parameter values do correspond to one of the 101 grid points. Instead, the

projected parameter vector 9*[2500] corresponds to the continuous-time parameters of {=0.62 and
=1 rad/sec. So, the parameter estimator gets ®,, correct, but is off on the value of { by -0.18,

since the true value is {=0.8. We also see from these results that the projection of the parameter
vector estimate didn't help reduce the parameter errors, since the raw parameter errors @[2500] are

smaller than the projected parameter errors 6*[2500]. The parameter estimation results of this
simulation are considered satisfactory in light of the difficult identification problem that occurs here.

The frequency-domain values of the plant transfer function are much less sensitive to changes in {
when it is close to unity than when it is close to zero. What really matters is how good our final
frequency-domain results are.

In Figure 9.60, we show the final bounding function Xsun(e")kT) for n=2500 (314.16

secs.), after smoothing and the addition of the safety factor. This uncertainty bounding function is
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larger than that of Figure 9.58, which corresponds to the £=0.2, =2 rads/sec. case. Thus, even

though we have used the same second-order unmodeled dynamics in Simulations 9.5.3 and 9.5.4,
we get a larger multiplicative uncertainty bounding function in the later case. There are two causes
for this result: 1) the parameter estimator yields slightly erroneous values in Simulation 9.5.4, and
2) the true plant of Simulation 9.5.4 rolls off at a lower frequency than that of Simulation 9.5.3.

Recall that in both simulations the additive error bounding function Ecumf,Nn(‘”k) is the same.

So, since the true plant of Simulation 9.5.4 is smaller at high frequencies then that of Simulation
9.5.3, the resulting multiplicative error bounding function will be larger. As a final note, we see
that the uncertainty bounding function of Figure 9.60 is still always less than unity and would be
useful for increasing the bandwidth in a closed-loop adaptive control context.
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Figure 9.57: Final Uncertainty Bounding Function Ksun(eka) for n=2500, Robust Estimator

using Frequency-domain Parameter Estimator, Case 3. Straight line is a priori bound A,,.
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9.5.4 Conclusion

In this section, we have studied the properties of the robust estimator through four
simulations, one using the dead-zone based time-domain parameter estimator and the rest using the
frequency-domain parameter estimator. We summarize our conclusions concerning these
simulations.

1) The frequency-domain parameter estimator performs better than the dead-zone based

parameter estimator.

2) The robust estimator (using the frequency-domain parameter estimator) works well and can

yield a multiplicative uncertainty bounding function that is less than unity and, hence, useful

for control design.

3) Since the additive error bound (at a given frequency) that the robust estimator can achieve is

governed by the input signal and the disturbance alone, a smaller multiplicative error bound (at

a given frequency) will result for a plant that is larger (at a given frequency).
These simulations show that the robust estimator (using a frequency-domain parameter estimator)
can provide us with a useful bounding function on the multiplicative modeling uncertainty. Again,
by useful we mean a bounding function that is, for example, less than unity for frequencies that are
lower than the target closed-loop bandwidth. As we will see in the next section, this will allow the
robust adaptive control system to increase the closed-loop bandwidth using the knowledge
provided by the robust estimator.
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9.6 Closed-loop Simulations using the Robust Estimator

9.6.1 Introduction

In this section, we will demonstrate that the robust estimator can be used in a robust adaptive
controller to provide improved closed-loop performance as compared with a non-adaptive
controller. In the simulations of this section, we will only use the robust estimator that uses the
frequency-domain parameter estimator. We do this because, in the open-loop simulations, the
frequency-domain parameter estimator was seen to perform better than the dead-zone based one.
Several closed-loop simulations will be performed using the simple adaptive controller that was
described in Chapter 7. In addition, we will implement a variation of the probing signal strategy
that was developed in Section 7.4.3. The primary purpose of this section is to evaluate the
behavior of the robust estimator in a closed-loop scenario and, hence, to see if it holds promise for
adaptive control. In the following simulations, we aim to show the strengths as well as the
weaknesses of the robust estimator.

9.6.2 Description of the Closed-loop Adaptive System and Performance Goals

Description of the Basic Closed-loop System

In this subsection, we describe the closed-loop adaptive system that will be simulated in the
following subsections. Figure 9.61 shows the block diagram of the complete robust adaptive
control system. We use the following simple pole-zero cancellation compensator,

K(z,0) =Gl(z,8) c/(z- 1), 9.6.1)

which was developed in Section 7.3. We assume that the constants €, and €, of Theorem 7.2 are

effectively zero in this subsection. In Eqn. (9.6.1), the compensator gain ¢ will be determined

using Eqn. (7.3.5) and Eqn. (7.3.24) in place of Eqn. (7.3.6), with €,=0. The compensator will

be updated every 100 sample times or every 12.57 secs. This is considered infrequent since, as
was discussed in Subsection 9.2.3, the slowest possible time constant of the true plant is 2.5 secs.
While this does make the closed-loop system time-varying, it has been shown that, if the system
varies "sufficiently slowly", then the exponential stability of the frozen-time systems implies the
exponential stability of the slowly time-varying system. See [36] for a derivation of an upper
bound on the variation rate for a slowly varying discrete-time system. So, if we guarantee that each
compensator update yields a robustly stable LTI system and we vary the compensator slowly
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enough, then the time-varying system is exponentially stable.
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Figure 9.61: Complete Robust Adaptive Control System with Probing Signal.

The saturation block in Figure 9.61 is introduced because we must know a bound on the
plant input signal u[n] as was assumed in AD3.1 of Chapter 3. We do not consider this a major
limitation of the theory in that most physical systems have saturating actuators anyway. In the
following simulations, we will attempt to avoid saturation at the plant input. One ramification of
this is that the reference signal r[n] must be chosen to be much smaller than the input signal that
was used in the previous simulations of this chapter. To avoid saturating at the input, for a system
with the target closed-loop bandwidth of 5 rads/sec., we choose the reference signal r[n] to be one
tenth of the input signal that was described in Subsection 9.2.8. Further, we also reduce the
disturbance to be a tenth of the disturbance that was used in the previous simulations. That is, in all

of the following simulations we use the disturbance signal of Subsection 9.2.7 with dfactor'—‘O’Ol’

as compared with dg,.,,=0.1 for the previous simulations. Recalling our discussion of how the

remainder term Erem looks like a constant disturbance term at all frequencies, we must also reduce

this term. From the table in Subsection 9.4.1, we choose the memory length M=200, as compared

with M=175 that was used in the previous simulations. This choice reduces Erem by a factor of 3
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to yield a value of 0.28901 for M=200. We scaled down our reference and disturbance signals by
the same amount so that the signal-to-noise ratio of the closed-loop simulations was similar to that
of the previous open-loop simulations.

In the following simulations we simulate the robust estimator using the frequency-domain
parameter estimator. We use the projection method that was described in Subsection 9.2.9 and the
weighting function of Eqn. (9.5.2) in the frequency-domain parameter estimator. In the
frequency-domain bounding method we include the smoothing and safety factor modifications that
were described in Sections 5.7 and 5.8, respectively. The robust uncertainty modification of
Section 5.6 is not used in the simulations. Instead, we use the less conservative modification of
making sure that the final uncertainty bounding function doesn't become less than the a priori

bounding function on the unstructured uncertainty, Au(ec‘)kT). That is, we denote the final

uncertainty bounding function that is used by the control-law update algorithm by Xsun(e“)k’r)neW

where
Ksun(‘?’(’)kT)new = max{ K311n(eka), Au(ewkT) b (9.6.2)

and where Zsun(eka) is the final bounding function yielded by the robust estimator.

Description of the Probing Si trat

In the following simulations we will introduce a probing signal for some cases. We will use
a modified form of the probing signal strategy that was developed in Section 7.4.3. First, we
discuss the modifications and then we discuss the starting, stopping and updating conditions of the
probing signal strategy.

The DFT magnitude of the probing signal, IVNn(cok)I, will be generated using the following
equation which is the same as Eqn. (7.4.18) except for the presence of the scaling factor .
VNP = vo (1+ [c/II%T - 1711+ By MeI%T, O)pe ] ) *

(Epem + DN@Q) / (IEIKT - 1)/ ¢y + 11 inf (1IGEKT0)1}), Vo (9.6.3)
0e©®

Recall that in our original derivation of IVN“(mk)I we assumed that: 1) the plant input signal was

periodic with period N {see Eqn. (7.4.1)} and 2) that the nominal model fit the cumulative
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frequency-domain estimate exactly {see Eqn. (7.4.4)}. Since these assumptions are not satisfied in

the following simulations, we introduce the aforementioned scaling factor. We choose =10 in
Eqn. (9.6.3) so that we stand a better chance of meeting our target closed-loop bandwidth. In
addition, we choose the (continuous-time) target closed-loop bandwidth to be 5 rads/sec. With
reference to Eqn. (7.3.20), we know that the nominal closed-loop system is

Tg@ =c/(z-1+0). (9.6.4)
So, if we want this system to have a discrete-time pole that corresponds to the continuous-time

target bandwidth, we must choose the target closed-loop compensator gain ¢, as follows,

cye1 = 1 - e Tads/sec)T _ g 46651 (9.6.5)
where we have used Eqgn. (7.4.10). This is the value of ¢, that we use in Eqn. (9.6.3).

As a second modification to the original probing signal strategy, we use a reduced number of
sinusoids in our generation of a time-domain signal. With reference to Eqn. (7.4.21), we use the
following equation to generate the time-domain probing signal,

N/4

v[n] = Z V(@I [agcos(2nkn/N)+bsin(2nkn/N)], (9.6.6)
k=1

zZr

for n=0,...,N-1
where ay and by are found using Eqns. (7.4.22-23). We choose not to excite the system at high

frequencies since we will then be exciting the unmodeled dynamics of the plant. We also don't

excite the system at 0=0 since we already know the D.C. gain of the true plant. By only exciting

the system for frequencies that are less than =N /4)=12.5 rads/sec., we prevent ourselves from

learning about the plant at high frequencies, unless of course the reference signal introduces
high-frequency signals. This can cause problems as we will see later in the simulations. A benefit
of this reduced excitation modification is a smaller time-domain probing signal.

A third and final modification concerns the selective turning-off of the probing signals for
certain frequencies. We turn-off a given sinsoidal frequency when

Ecumf N(@) < 1 1@k - 1)/ cigg + 1 inf (IGEICKT,0)1) ). 9.6.7)
6e®

This equation differs from Eqn. (7.4.26) in that we have introduced a scaling factor n, which we
choose to be 0.5 in the following simulations. We use this scaling factor to make sure that after
adding the safety factor of Section 5.8, we still have a small enough uncertainty bounding function
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to be able to achieve our target closed-loop bandwidth. Now we discuss starting, stopping and
updating conditions for the probing signal strategy.

In the following simulations we want things to happen in a finite time frame, so for the cases
that use the probing signal we start the probing signal at time 0. The probing signal is updated
every N=1000 time samples, or every 125.66 secs. That is, in Eqn. (9.6.2) we use the most recent

values of the compensator gain ¢ and the uncertainty bounding function Zsun(ejka, é)new~

Updating the probing signal more often than the DFT length can cause problems. For example, if
the probing signal were updated 10 times during the 1000 point DFT, then the transitions change
the frequency content of the whole 1000 point signal. The probing signal is turned off as soon as
the target compensator gain ¢;.j= 0.46651 is achieved.

Adaptive Control and Closed-loop Performance Goals

We briefly discuss the overall goal of the robust adaptive control system. The goal of the
robust adaptive control system is to reduce the structured uncertainty to zero and thus allow
improved closed-loop control. Ideally, we would like to have the uncertainty bounding function

A, approach the a priori bounding function A,, on the unstructured uncertainty alone. If the

uncertainty were reduced to the a priori bounding function A, of Eqn. (9.2.24), which is never
greater than unity, then the control-law update algorithm would yield a compensator gain of c=1.
As was discussed in Remark 4 of Section 7.3, this would yield a deadbeat system, that is, the
nominal closed-loop system would become simply a delay of one sampling period, Tcl(z)=z'1. In
the following simulations we will allow the adaptive control system to become deadbeat if it can
reduce the uncertainty sufficiently. However, alternatively we could disallow the compensator gain

¢ from becoming larger than the target gain of 0.46651. If this is modification is used, the resulting
system is more robust than a deadbeat system.

9.6.5 Simulations using Case 2

In this subsection, we simulate the closed-loop adaptive system that was described above
using the true plant of Case 2 of Subsection 9.2.4, which includes second-order unmodeled
dynamics. Recall that the nominal model of Case 2 corresponds to the continuous-time parameters

{=0.2 and ®, =2 rads/sec. In addition, we introduce a disturbance with dg,.4o=0.01. We perform
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two simulations, one without and one with the probing signal. For initial values, in both
simulations, we set the cumulative frequency-domain estimate to the frequency response of the

nominal model for {=0.8 and =1 rad/sec., and set the corresponding cumulative

frequency-domain bounding function to the best bounding function that can be found using only a
priori knowledge of the plant. Thus, we start the frequency-domain bounding method with

parameter values that are very far from the true values of {=0.2 and o, =2 rads/sec.

Simulation 9.6.1: Case 2. with a Disturbance, without a Probing Signal

In this simulation we do not use a probing signal, but rely solely on the reference signal rn]
for excitation. First, we present a time history of the simulation in Table 9.11. In this table, we
show the compensator gain that is computed by the control-law update algorithm every 100 time
samples. As noted in the table, the compensator is not updated when the newly computed
compensator gain is smaller than the current compensator gain. We also show the values of the
continuous-time parameters that correspond to the nearest point in the 101 point projection grid.
For insight, we compute the value of the continuous-time pole that corresponds to the discrete-time
pole of the nominal closed-loop system. We compute

Continuous-time Bandwidth =- (1/T) In(1 - ¢), (9.6.8)
where c is the current compensator gain. From this table we see that the frequency-domain
parameter estimator is able to find the true parameters of the nominal plant model by time n=2200
(276.46 secs.). In addition, the adaptive system is able to increase the bandwidth from 0.10
rad/sec to 2.49 rads/sec. However, we don't achieve our desired closed-loop bandwidth of 5
rads/sec. in the time frame of the simulation. It is possible that the system could eventually reach
this target closed-loop bandwidth, as the sucessively higher bandwidth compensators are
introduced. Using a priori information only we are stuck with the low nominal bandwidth of 0.10
rad/sec. for our control-law design methodology and our choice of initial conditions. Excited only
by the relatively small reference signal r{n], the adaptive system is able to increase the bandwidth
and thus yield better command-following properties for the closed-loop system. This improvement
in command following can be seen in Figure 9.62, where we show the reference signal r[n] and the
plant output y[n] on a broken time scale. Compare the command following for the time intervals
just after 0, 125 and 250 secs. The tracking error,

ey[n] =r{n] - y[n], (9.6.9)
is shown in Figure 9.63, where we see that the error reaches zero faster just after 250 secs. than it
does just after 0 secs. In Figure 9.64, we show the cumulative frequency-domain error bounding
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function, Ecumf,Nn(“)k)’ and the actual error magnitude, 'Ecumf,Nn(‘”k)" for n=2500 (314.16

secs.). The effect of the disturbance is clearly evident in the frequency range from 0 to 2.5
rads/sec. At higher frequencies, we can still see visages of the smooth a priori bounding function
that was used to initialize the frequency-domain bounding method. In Figure 9.65, we show the

bounding function Xsun(eimk'r) yielded by the robust estimator along with a straight-line

representing the lower bound, Au(eJ ka), that we enforce via Eqn. (9.6.2). Clearly, for this

example, the modification of Eqn. (9.6.2) has no effect. From Figure 9.65, we see how the
low-frequency peak, which is due to the disturbance, limits the bandwidth to 2.49 rads/sec.

Table 9.11: Simulation 9.6.1 - Case 2, with a Disturbance, without a Probing Signal.

True Continuous-time Parameters, { = 0.2 and @, = 2 rads/sec.

(* denotes no compensator update)

Time | Time |  Computed ! Continuous-time Continuous-time
Index | t | Compensator | Parameter Estimates | Bandwidth
n_| (secs.) | Gain I | (O |__(rads/sec.)

0 | 0 | 001213 L 0.80 | 1.0 | 0.10
100 | 12.57 | _0.01213* | 0.80 I 1.0 l 0.10
200 | 25.13 | _0.01988 I 0.38 | 1.1 I 0.16
300 | 37.70 | 0.03430 I 0.32 | 1.3 I 0.28
400 | 50.27 |_0.03449 | 0.32 | 1.3 I 0.28
500 | 62.83 | 0.04213 I 0.26 I 1.6 | 0.34
600 | 75.40 004213 * | 0.26 I 1.6 I 0.34
700 | 87.96 | 0.04382 | 0.26 l 1.6 I 0.36
800 | 100.53 | _0.05318 I 0.26 I 1.6 I 0.43
900 | 113.10 | 0.05318* | 0.26 | 1.6 | 0.43
1000 | 125.66 | _0.05318* | 0.26 | 1.6 I 0.43
1100 | 138.23 |__0.05540 I 0.26 I 1.6 I 0.45
1200 | 150.80 | _0.06531 I 0.26 I 1.6 I 0.54
1300 | 163.36 | 0.06712 I 0.26 I 1.6 I 0.55
1400 | 17593 | _0.07491 I 0.26 | 1.7 | 0.62
1500 | 188.50 | 007349 * | 0.26 I 1.7 I 0.62
1600 |  201.06 007349 * | 0.26 I 1.7 I 0.62
1700 I 213,63 | 007349 * | 0.26 I 1.7 | 0.62
1800 1 226.20 | 007227 * | 0.26 I 1.8 I 0.62
1900 |  238.76 | _0.07696 I 0.26 I 1.8 I 0.64
2000 1 251.33 | _0.08663 I 0.26 | 1.8 I 0.72
2100 |  263.89 | _0.08663 * | 0.26 I 1.8 I 0.72
2200 | 27646 | 0.18548 ! 0.20 I 2.0 I 1.63
2300 | 28903 | 0.18548 * | 0.20 I 2.0 | 1.63
2400 | 301.59 | 0.26857 I 0.20 ! 2.0 I 249
2500 | 314.16 026857 * | 0.20 l 20 I 249
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imulation 9.6.2: Case 2, with a Disturbance and a Probing Signal

In this simulation we use the probing signal strategy that was described in Subsection 9.6.5.
Since the probing signal doesn't excite high frequencies (i.e. above 12.5 rads/sec.), we can only
gain high-frequency knowledge of the plant from the excitation due to the reference signal. A time
history of the simulation is presented in Table 9.12. From this table we see that the
frequency-domain parameter estimator is able to find the true parameters of the nominal plant model
by time n=900 (113.10 secs.). As expected, the probing signal allows the robust estimator to find
the true parameter values in a much shorter time than in the previous simulation. In addition, the
adaptive system is able to greatly increase the closed-loop bandwidth from the low initial value of
0.10 rad/sec. At the end of the simulation, the nominal closed pole of the discrete-time system is

zero, which corresponds to an infinite continuous-time bandwidth via the relationship 2=eST.

However, we must recall that the nominal closed-loop system still has a delay of one sampling
period. The increases in bandwidth that occur after the probing signal is turned off are due to the
excitation of the reference signal. As was discussed previously, we could have prevented the
system from becoming deadbeat by not allowing the compensator gain to become any larger than
the value that achieves our target closed-loop bandwidth.

From this simulation, we see that the probing signal gets things started for the adaptive
control system, but is turned-off at n=1100 (138.23 secs.) when the nominal closed-loop
bandwidth exceeds our target value. Comparing the results of this simulation with the previous
one, we see that the probing signal has indeed helped the robust estimator identify the system and
yield a high-performance closed-loop system. However, in the following time-domain figures, we
will see how the probing signal also greatly disturbs the system, preventing any semblance of
command-following when the probing signal is present.

In Figure 9.66, we show the probing signal v[n]. The signal is only updated once at n=1000
(125.66 secs.) and is changed very little at this time, since the compensator gain ¢ is still small.
The reference signal r{n] and the plant output y[n] are shown, on a broken time scale, in Figure
9.67. From this figure, it can be seen that, after the probing signal is turned off, the command
following appears to be good. From Table 9.12, we know that after n=2200 (276.46 secs.) the
nominal closed-loop system is simply a delay. In Figure 9.68, we show r[n] and y[n] again, on a
shorter time scale, to show that the actual closed-loop system indeed performs like a delay of
T=0.126 secs. except for the presence of the unmodeled dynamics. The tracking error is shown in
Figure 9.69, where the effects of the probing signal are again apparent. Note that the tracking error
doesn't go to zero because of the unavoidable delay in the discrete-time closed-loop system. These
time-domain figures show how much the probing signal disturbs the system in this example. If we
used a smaller probing signal, then we would have to wait longer for the closed-loop bandwidth to
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increase. We now consider our frequency-domain results.
In Figure 9.70, we show the cumulative frequency-domain error bounding function,

Ecumf,Nn((’)k)’ and the actual error magnitude, lEcumf,Nn((”k)l’ for n=2500 (314.16 secs.). We

see how the probing signal has provided accurate information for frequencies below 12.5 rads/sec.
At frequencies above 12.5 rads/sec, the bounding function is larger, since only the reference signal
excites the system for these frequencies. In Figure 9.71, we show the bounding function

Zsun(eJ ka) yielded by the robust estimator along with a straight-line representing the lower

bound, Au(e) ka), that we enforce via Eqn. (9.6.2). For this example, the modification of Eqri.

(9.6.2) has an effect and prevents the uncértainty bounding function that is used in the control-law

update, from becoming less than Au(e’]ka)' Comparing Figures 9.65 and 9.71, we see how the

probing Signal has counteracted the effect of the disturbance in the low-frequency range. For
insight, we investigate the disturbance rejection properties of the closed-loop system at different
time indices.

In Figure 9.72, we show the magnitude of the nominal sensitivity transfer function,

S(2)=(z-1)/(z-1+0), : 4 (9.6.10)
for time indices n=0, n=500 (62.83 secs.), n=1100 (138.23 secs.), n=2100 (263.89 secs.) and
n=2200 (276.46 secs.). That is, at the different time indices shown in Table 9.12, the compensator
gain ¢ will have different values corresponding to different nominal sensitivity transfer functions.
We show the sensitivity transfer functions to make a point. From Figure 9.72 we see that, as time
increases, the closed-loop does an increasingly good job of rejecting disturbances in the
low-frequency range. This means that to produce the same effect at the plant input u[n], the
probing signal v[n] will need to be made increasingly larger to compensate for the fact that it is
being rejected by the closed-loop system. In the present simulation, we don't get to see this occur,
since the probing signal turns off before the loop can effectively reject it.
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Table 9.12: Simulation 9.6.2 - Case 2, with a Disturbance and a Probing Signal.

True Continuous-time Parameters, { = 0.2 and o, = 2 rads/sec.

(* denotes no compensator update)

(@ denotes probing signal turn-off)

Time | Time |  Computed | Continuous-time Continuous-time
Index | t | Compensator | Parameter Estimates | Bandwidth
n_| (secs.) I Gain I 4 I [ | _(rads/sec.)
Q_l 0 | 0.01213 | 0.80 I 1.0 I 0.10
100 | 12.57 | _0.01698 I 0.44 I 1.0 I 0.14
200 | 25.13 |__0.02256 I 0.38 I 1.1 | 0.18
300 | 37.70 | 0.04243 I 0.32 I 1.3 I 0.35
400 | 50.27 | 0.04213* | 0.26 l 1.6 I 0.35
500 | 62.83 I_0.04303 I 0.26 I 1.6 I 0.35
600 | 75.40 | 0.04180* | 0.26 I 1.7 I 0.35
700 | 87.96 |_0.04155* | 0.26 I 1.8 I 0.35
800 | _100.53 | _0.04155* | 0.26 I 1.8 I 0.35
900 | _ 113.10 | _0.03990 * | 0.20 I 2.0 I 0.35
1000 | 125.66 __0.03990* | 0.20 I 2.0 I 0.35
1100 | 138.23 | 0531770 | 0.20 | 2.0 I 6.04
1200 | 150.80 | _0.53177* | 0.20 I 2.0 | 6.04
1300 | 163.36 | 053177 * | 0.20 I 2.0 I 6.04
1400 | 175.93 |_0.53177* | 0.20 | 2.0 I 6.04
1500 | 188.50 | 053177 * | 0.20 I 2.0 I 6.04
1600 | 201.06 | 053177 * | 0.20 I 2.0 I 6.04
1700 | _ 213.63 053177 * | 0.20 I 2.0 I 6.04
1800 1 22620 053177 * | 0.20 I 2.0 I 6.04
1900 | 238.76 053177 * | 0.20 I 2.0 I 6.04
2000 | 251.33 053177 * | 0.20 I 2.0 I 6.04
2100 |  263.89 I _0.65683 I 0.20 I 2.0 I 8.51
2200 | 276.46 | _1.00000 I 0.20 I 2.0 | )
2300 | 289.03 | 1.00000* | 0.20 I 2.0 I oo
2400 | 301.59 | 1.00000* | 0.20 I 20 I oo
2500 | 31416 | _1.00000* | 0.20 I 2.0 I oo
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Figure 9.69: Tracking Error, e,[n]
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.6.6 Simulations using Case 4

In this subsection, we simulate the closed-loop adaptive system using the true plant of Case 4
of Subsection 9.2.4, which includes second-order unmodeled dynamics. Recall that the nominal

model of Case 4 corresponds to the continuous-time parameters {=0.8 and o,=1rad/sec. In

addition, we introduce a disturbance with dg,.;5r=0.01. We perform two simulations, one without -

and one with the probing signal. For initial values, in both simulations, we set the cumulative

frequency-domain estimate to the frequency response of the nominal model for {=0.2 and ®,=2

rads/sec., and set the corresponding cumulative frequency-domain bounding function to the best
bounding function that can be found using only a priori knowledge of the plant. Thus, we start the
frequency-domain bounding method with parameter values that are very far from the true values of

£=0.8 and @ =1 rad/sec. From our open-loop simulation results, we expect the robust estimator to

have much more difficulty identifying Case 4, than it did with Case 2 in the previous subsection.
Again, this is because Case 4 rolls-off at a lower frequency than Case 2.
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In this simulation we do not use a probing signal but rely solely on the reference signal r[n]
for excitation. First, we present a time history of the simulation in Table 9.13. From this table we
see that the frequency-domain parameter estimator is not able to find the true parameters of the
nominal plant model. In addition, the robust adaptive controller is not able to increase the
compensator gain and, hence, the nominal closed-loop bandwidth. Consequently, the system
exhibits very poor command-following properties as can be seen in Figure 9.73, which shows the
tracking error.

One cause for the poor performance of the robust estimator is our initial choice of

compensator. For {=0.2 and ©,=2 rads/sec., the plant-inverting compensator greatly attenuates

the frequency components around 2 rads/sec. since this is where the nominal model corresponding

to {=0.2 and o =2 rads/sec. has a large peak. In this simulation, it might have been wise to update
n

the compensator even if the newly computed compensator gain is not less than the current gain.
That is, the frequency response of a lower gain compensator might be more desirable from an
excitation viewpoint than the compensator that has a notch at 2 rads/sec. In Figure 9.74, we show

the cumulative frequency-domain error bounding function, Ecumf,Nn(“)k)’ and the actual error

magnitude, 'Ecumf,Nn(“)k)" for n=2500 (314.16 secs.). The large peak in this figure is due to the

poor compensator (from an excitation viewpoint) and the effects of the disturbance. At higher
frequencies, we can still see visages of the smooth a priori bounding function that was used to
initialize the frequency-domain bounding method. In Figure 9.75, we show the bounding function

Ksun(e’] (’)kT) yielded by the robust estimator along with Au(e’ ka). For this example, the

modification of Eqn. (9.6.2) has no effect. From Figure 9.75, we see how that the uncertainty
bounding function is larger than unity for all frequencies greater than about 1 rad/sec. Clearly, this
bounding function is not very useful for increasing the bandwidth of the system.
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Table 9.13: Simulation 9.6.3 - Case 4, with a Disturbance, without a Probing Signal.
True Continuous-time Parameters, { = 0.8 and ®,, = 1 rad/sec.

(* denotes no compensator update)

Time |  Time | Computed | Continuous-time Continuous-time
Index | t | Compensator | Parameter Estimates | Bandwidth
n | (secs.) I Gain I I W |__(rads/sec.)
Q| 0 | _0.13292 | 0.20 | 2.0 | 1.13
100 | 12.57 |_0.13202 * | 0.20 I 2.0 I 1.13
200 1| 25.13 |__0.05843 * | 0.20 I 2.0 I 1.13
300 | 37.70 | _0.05849 * | 0.20 I 2.0 I 1.13
400 | 50.27 | 0.06017 * | 0.26 I 1.8 I 1.13
500 | 62.83 | _0.06839 * | 0.26 I 1.8 I 1.13
600_| 75.40 | _0.06578 * | 0.38 I 1.9 I 1.13
700 | 87.96 I _0.06578 * | 0.38 I 1.9 I 1.13
800 | 100.53 | _0.06578 * | 0.38 I 1.9 I 1.13
900 ! 113.10 | _0.06578 * | 0.38 I 1.9 I 1.13
1000 | 125.66 | _0.05804 * | 0.44 I 1.8 I 1.13
1100 | 13823 |_0.05730 * | 0.56 I 1.8 I 1.13
1200 1 150.80 I__0.05468 * | 0.68 | 1.5 I 1.13
1300 | 163.36 [__0.05468 * | 0.68 I 1.5 | 1.13
1400 | 17593 |_0.05468 * | 0.68 I 1.5 I 1.13
1500 1 188.50 | _0.05468 * | 0.68 I 1.5 I 1.13
1600 | 201.06 | 0.05468 * | 0.68 I L5 I 1.13
1700 | 21363 | 0.05468 * | 0.68 I 1.5 I 1.13
1800 |  226.20 I 0.05538* | 0.68 I 1.5 I 1.13
1900 |  238.76 | _0.05538 * | 0.68 I 1.5 I 1.13
2000 | 25133 | _0.05868 * | 0.62 I L5 I 1.13
2100 | 263.89 | 0.05868 * | 0.62 I 1.5 I 1.13
2200 | 276.46 I_0.05868 * | 0.62 I L5 I 1.13
2300 | 289.03 I_0.05673* | 0.62 | 1.5 I 1.13
2400 | 301.59 | _0.05673 * | 0.62 I 1.5 I 1.13
2500 | 314.16 I _0.05673* | 0.62 I 1.5 I 1.13
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Figure 9.73: Tracking Error, ¢[n] = r{n] - y[n], for Case 4, Without Probing Signal.
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Simulation 9.6.4: Case 4, with a Disturbance and a Probing Signal

In this simulation, we use the probing signal strategy that was described in Subsection 9.6.5. ‘

A time history of the simulation is presented in Table 9.14. From this table we see that the
frequency-domain parameter estimator is not able to find the true parameters of the nominal plant; ‘
!

however, it is able to find the correct value of {=0.8. This partial knowledge combined with the
frequency-domain bounding information allows the adaptive system to increase the closed-loop
bandwidth from the initial value of 1.13 rads/sec to 2.44 rads/sec. As can be seen from the table,
the first 1000 sample times of the probing signal result in no increase in the closed-loop bandwidth.
The probing signal is updated at n=1000, that is, a new compensator gain and uncertainty bounding
function are used in Eqn. (9.6.3). This updated probing signal, which is again updated at n=2000,
results in the bandwidth increase at n=2200. Since the target closed-loop bandwidth is not reached,
the probing signal is not turned off and continues to disturb the system until the end of the
simulation. This performance is not very impressive, but the understanding that we gain from this
simulation provides clues for making improvements in our probing signal strategy. |
In Figure 9.76, we show the probing signal v[n]. This signal is updated at n=1000 (125.66
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secs.) and n=2000 (251.33 secs.). The tracking error is shown in Figure 9.77, where the effects of
the probing signal are again apparent. Since the probing signal overwhelms the reference signal in
this example, we cannot observe any kind of command following performance. However, for
times greater than n=2200 (276.46 secs.), when the compensator is updated, the system seems to
do a better job of rejecting the probing signal. To understand the poor performance of this
simulation we must consider our frequency-domain results. ‘

In Figure 9.78, we show the cumulative frequency-domain error bounding function,

Ecumf,Nn((’)k)’ and the actual error magnitude, 'Ecumf,Nn(“)k)'v for n=2500 (314.16 secs.). We

see how the probing signal has provided accurate information for frequencies below 12.5 rads/sec.
However, the robust estimator has not been able to learn any information about the plant for
frequencies greater than 12.5 rads/sec. For these frequencies the cumulative frequency-domain
estimate is still equal to the initial value. So, for frequencies above 12.5 rads/sec. the cumulative
frequency-domain estimate, at n=2500 (314.16 secs.) is equal to the frequency response of the

nominal model for {=0.2 and ©, =2 rads/sec. When the parameter estimator performs its

frequency-domain fit to the cumulative frequency-domain estimate it sees no peak but the erroneous

information at high frequencies results in a large error for the o, estimate. This helps explain the

fact that the frequency-domain parameter estimator correctly estimates  to be 0.8 but yields a

grossly incorrect value of w,=2 rads/sec instead of the true value of 1 rad/sec. One solution to this

problem would be to actually have the probing signal excite the true plant at high frequencies, thus
enabling the frequency-domain estimator to perform better. This would help us in the example of
this simulation, because the structured uncertainty is large at high frequencies. However, this
increased excitation approach will result in a larger probing signal that will saturate the plant input
in this simulation. If the plant input signal saturates, then some frequency components of the
probing signal will be reduced resulting in insufficient excitation at those frequencies.

In Figure 9.79, we show the bounding function -A_sun(eJ“’kT) yielded by the robust

estimator along with Au(ejka). For this example, the modification of Eqn. (9.6.2) has no effect.

Comparing Figures 9.75 and 9.79, we see that the probing signal has helped greatly to reduce the
uncertainty bounding function, particularly in the low-frequency range. From Figure 9.79, it can
be shown that it is the large values of the uncertainty bounding function at high frequencies that
limit the bandwidth of the system. The probing signal must be extended further into the high
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frequency range to obtain the target closed-loop bandwidth in this example.
A Note for the Curious Reader

The perceptive reader will notice that the cumulative frequency-domain bounding function is
updated for frequencies greater than 12.5 rads/sec in Simulation 9.6.3 (no probing signal) but is
not updated in this frequency range in Simulation 9.6.4 (with a probing signal). Since the
reference signal r{n] is the same in both simulations, this is a curious result. The author believes
that in Simulation 9.6.4, the mild saturation that occurs at the plant input is the cause of this
phenomenon. As can be seen from Figure 9.74, for frequencies greater than 12.5 rads/sec, the
improvement in the cumulative frequency-domain error bounding function is very small. That is,
the reference signal provides just enough signal to learn something at these high frequencies in the
no probing signal case. In the probing signal case, a small amount of saturation occurs at the plant
input, thereby reducing the richness of the reference signal enough so that no updating occurs at
high frequencies. To test this theory, the reference signal was increased slightly in the probing
signal case and it was indeed observed that some updating then occurred for frequencies greater
than 12.5 rads/sec. '
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Table 9.14: Simulation 9.6.4 - Case 4, with a Disturbance and a Probing Signal.
True Continuous-time Parameters, { = 0.8 and w,, = 1 rad/sec.

(* denotes no compensator update)

Time | Time |  Computed | Continuous-time Continuous-time
| Index | t | Compensator | Parameter Estimates | Bandwidth
| n__| (secs.) I Gain I I |__(rads/sec.)

0 | 0 | _0.13292 I 0.20 I 2 b | 1.13

| 100 | 12.57 | _0.07629 * | 0.20 I 2.0 I 1.13
200 | 25.13 | 0.06486 * | 0.26 I 1.9 l 1.13

300 | 37.70 | _0.05558 * | 0.32 I 1.9 I 1.13

400 | 50.27 | 0.04759 * | 0.32 I 1.9 I 1.13

500 | 62.83 | 0.05739 * | 0.38 | 1.9 I 1.13

600_| 75.40 [_0.05298 * | 0.44 I 1.8 I 1.13

700 | 87.96 |_0.05618 * | 0.50 I 1.8 | 1.13

800 |  100.53 005618 * | 0.50 I 1.8 | 1.13

900 | 113.10 |__0.04639 * | 0.80 I 2.0 I 1.13

1000 | 125.66 |__0.04639 * | 0.80 | 2.0 | 1.13

1100 | 138.23 | 0.07299 * | 0.80 l 2.0 | 1.13

1200 | 150.80 |_0.12444* | 0.80 I 2.0 l 1.13

1300 | 163.36 | _0.12444 * | 0.80 I 2.0 | 1.13

1400 | 17593 | _0.12444 * | 0.80 | 2.0 | 1.13

1500 | 188.50 | 0.12444* | 0.80 I 2.0 l 1.13

1600 | 20106 | _0.12444 * | 0.80 I 2.0 | 1.13

1700 | 213.63 | _0.12444* | 080 I 2.0 l 1.13

1800 | 226.20 1012444 * | 0.80 I 2.0 I 1.13

1900 | _ 238.76 |_0.12444 * | 0.80 I 2.0 | 1.13

2000 | 251.33 [ 012444 * | 0.80 I 2.0 | 1.13

2100 | 263.89 | _0.12444 * | 0.80 I 2.0 ! 1.13

2200 | 276.46 | 026425 | 0.80 I 2.0 l 2.44

2300 | 289.03 1 _026425* | 0.80 I 2.0 I 2.44

2400 | 301.59 | 026425 * | 0.80 | 2.0 I 2.44

2500 1 314.16 |_0.26425* | 0.80 I 2.0 l 2.44

The probing signal never turns off in this simulation.
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Figure 9.76: Probing Signal v[n] for Case 4 Simulation.
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Figure 9.77: Tracking Error, e,[n] = r[n] - y[n], for Case 4, With Probing Signal.
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9.6.5 Conclusion of Closed-loop Simulation Subsection

In this subsection, we have studied the properties of the robust estimator in a closed-loop
scenario. We summarize our conclusions concerning the performance of the robust adaptive
control system that uses the robust estimator.

1) For Case 2 ({=0.2 and ®,=2 rads/sec.) with no probing signal, the system improves the

nominal bandwidth some but not as much as the target value of 5 rads/sec.

2) For Case 2 ({=0.2 and o, =2 rads/sec.) with a probing signal, the system quickly improves

the nominal bandwidth to the target value of 5 rads/sec., at the expense of greatly disturbing the
system for the period of identification.

3) For Case 4 (£{=0.8 and @, =1 rad/sec.) with no probing signal, the system cannot improve

thc. nominal bandwidth. - |

4) For Case 4 ({=0.8 and w_=1 rad/sec.) with a probing signal, the system improves the
n

bandwidth some, but not as much as the target value of 5 rads/sec. The probing signal ' |

continues to greatly disturb the system throughout the simulation. \
As previously mentioned for 4) above, the problem was that the probing signal wasn't rich enough
for frequencies that are greater than 12.5 rads/sec. These simulations show us that, for some
examples, the robust adaptive control system can increase the bandwidth without the probing signal
while for other examples a probing signal must be introduced. Alternative probing signal strategies
that result in a longer identification time, but that disturb the system much less, were discussed in
Section 7.4.4. We reserve our more global conclusions for the final section of this chapter.

9.7 Conclusions

In this chapter, we have considered a non-trivial plant example and shown how the robust
estimator can be used in open-loop and closed-loop situations to identify the plant. The bottom line
is that a robust adaptive control system that uses the robust estimator can increase the closed-loop
bandwidth and, hence, improve the performance of a system under the right excitation conditions.
In some situations the reference signal may supply sufficient excitation to increase the bandwidth at
a desired rate but in other situations a probing signal must be added to achieve a target closed-loop

bandwidth within a certain amount of time. For hard identification problems, the required
excitation signals will be large if the plant is to be identified in a short amount of time. For |
example, the problem of identifying the plant transfer function of Case 4 in the region near the |
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target closed-loop bandwidth of 5 rads/sec., is difficult since the plant transfer function has rolled
off considerably by this frequency. In any event, the robust adaptive control system using the
robust estimator will provide improved performance when the plant input signal is rich enough.
When the plant input is not rich, then the robust adaptive controller simply becomes the best control
system that we could design (using our design method) given the current state of our plant
knowledge.

The closed-loop results of this chapter were found using our pragmatic fix of not letting the
uncertainty bounding function become less than the a priori bounding function on the unstructured

uncertainty. If the robust uncertainty bounding function Asun(e]ka) of Subsection 5.6.3 had

been used instead, then the closed-loop bandwidths attained by the adaptive control system would

have been smaller. This is because f&sun(e] ka) is more conservative than the uncertainty

bounding function that was used in this chapter.

A final issue that we mention is the large computational burden of the robust estimator. As
was discussed in Section 6.7, one of the major components of this computational burden is the
corhputatioxi of the error bounding function of Eqn. (5.2.4). As an example, consider the
closed-loop simulations of this chapter where M=200 and N=1000. At every sample time, the sum
of Eqn. (5.2.4) has about 200 terms and this sum must be computed at about N/2=500 frequency
points. So, for Eqn. (5.2.4) alone, we must perform the operations of subtraction and
multiplication and addition, 100,000 times each. Simulation 9.6.1, which was 2500 sampling
periods in length, required about 12 minutes of CPU time on a Cyber 205 supercomputer. Since
the simulation time scale runs to 314 secs., we see that the Cyber 205 is too slow, for real-time
control, by a factor of 2!
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CHAPTER 10.
CONCLUSIONS AND FUTURE RESEARCH

10.1 Conclusions

In this thesis, we have developed a new method for identifying a partially known plant, in
the presence of unmodeled dynamics and an unmeasurable disturbance. Our entire development
was motivated by the need to provide identification guarantees in a robust adaptive control system.
The robust estimator was developed to provide: 1) a nominal plant model, and 2) a
frequency-domain bounding function on the modeling error. The nominal plant model is required
because current control-law design methodologies require such a finite-dimensional nominal model.
In the future, new control-law design methodologies may not require an explicit nominal model.
The frequency-domain bounding function on the modeling error is required for the
frequency-domain stability-robustness tests. These tests allow us to guarantee that the nominal
closed-loop control system is robustly stable to the modeling error. Next, we summarize the major
results of the thesis.

In Chapter 2, we developed several new signal processing theorems. In particular, we found
a way to bound the effects of using finite-length data in frequency-domain estimation. We also
found a time-domain bound on the output of a system, using a magnitude bounding function on the
frequency response of the system. This result was based on the work of Orlicki {14]. In Chapter
3, we stated the robust estimation problem. First, we started with a set of assumptions concerning
the continuous-time plant and disturbance. Then, an analogous set of assumptions was developed
in discrete-time using the original continuous-time assumptions. In this way, we tried to remain
faithful to our goal of controlling a continuous-time plant. The robust estimator problem was then
stated in discrete-time.

Given the statement of the robust estimation problem, we investigated two approaches for
providing parameter estimates for the nominal plant model, one using time-domain methods and
one using frequency-domain methods. In Chapter 4, we developed a dead-zone based parameter
estimator that uses time-domain methods and in Chapter 5, we presented a frequency-domain
method for computing parameter estimates. In the simulations, the frequency-domain parameter
estimator worked much better than did the dead-zone based parameter estimator. In Chapter 5, we
also developed the frequency-domain method for bounding the modeling uncertainty. The
pragmatic design choices for the methods of Chapters 4 and 5 were addressed in a closed-loop
adaptive control context, in Chapter 6.

Having completed the development of the robust estimator itself, in Chapter 7 we addressed
the more global problem of robust adaptive control. We developed a simple adaptive control
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system that uses the robust estimator as a component. In addition, the issue of adding probing
signals to enhance identification was discussed. Since the performance of the robust estimator was
not apparent from its development, we performed extensive simulations in order to understand its
properties. '
In Chapter 8, some of the basic building blocks that are used in the time-domain parameter
estimator and the frequency-domain bounding method, were simulated and analyzed. This
understanding enabled us to provide explanations of the more complex simulations that were
presented in Chapter 9. The robust estimator was simulated in both open-loop and closed-loop
situations in Chapter 9. The overall conclusion is that when the plant input signal is rich enough,
the robust estimator can be used in a robust adaptive control system to provide significant
performance increases, as measured by increases in the bandwidth of the system. When the plant
input signal isn't inherently rich, the designer must face the tradeoff of adding a probing signal that
enhances identification but disturbs the system. The results of this thesis have demonstrated that a
robust estimator based adaptive control system can provide useful performance increases for
non-trivial plant examples that have have unmodeled dynamics and an unmeasurable disturbance.

10.2 Directions for Future Research

In this section, we will discuss areas for future research on the problem of robust adaptive
control. There are several unfinished issues concerning the development of a robust adaptive
control system that uses the robust estimator.

10.2.1 Robust Control Methods

The robust adaptive control scheme that was discussed in Chapter 3 and shown in Figure
3.4, requires a control-law design method that can be implemented in an on-line manner. That is,
we require a completely automated robust control design methodology that can use the information
from the robust estimator to yield a system that is robustly stable to the effects of the modeling
uncertainty. Currently, there exist robust control design methods, such as the LQG/LTR
methodology [2], that can be used in an off-line manner to achieve robust control designs.
However, the author is not aware of any methods that do this in a completely automated way. So,
as a first step, an automated robust control design methodology must be developed.

As a second issue for robust control research, we suggest the development of a robust
control design method that is performed entirely in the frequency-domain. In the development of
the frequency-domain bounding method, we had to add a term to account for the difference
between the frequency response of the nominal model and the cumulative frequency-domain
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estimate. If we didn't need to use a nominal model for control design but worked directly with the
frequency-domain estimate, then we wouldn't have to introduce this extra term that adds to the
conservativeness of our bounding function.

10.2.2 Probing Signal Requirements

The issue of probing signal requirements was addressed in Chapter 7 but work remains to be
done in this area. In Chapter 7, we provided insight as to what the excitation requirements of the
robust estimator are. However, the issue of how to choose the probing signal requires additional
study. In particular, the following questions require further examination.

1) What kind of tradeoff should be made between:
a) enhancing identification now via a probing signal (leading to better control performance
later), and
b) disturbing the system with such a probing signal?
2) How should we determine when to introduce or take away a probing signal?
3) How can we monitor the current richness of the plant input signal and use this knowledge in
our choice of a probing signal?
There has been considerable literature on "optimal inputs” for identification, see Mehra [41].
However, in the specific context of an adaptive controller that uses the robust estimator, work
remains to be done.

10.2.3 Treatment of Unstable Plants

One of the starting assumptions for the development of the robust estimator was the '
assumption that the true plant was stable. This assumption is required by the frequency-domain
estimation method. The plant has to be stable so that the most recent plant input data, which
determines the DFT of the input signal, has the strongest effect on the most recent plant output data,
which determines the DFT of the output signal. If the plant is unstable, it is the data from the
distant past that most strongly influences the current value of the plant output. In this case, the
frequency-domain estimate based on finite-length DFTs would not yield any useful information.

One solution to this problem is to identify the closed-loop transfer function and then use this
estimate to infer an estimate of the true plant transfer function. For example, the true closed-loop
transfer function is given by

Teltrue® = Gyrue@ K@) / (1 + Gre@ K(2) ), (10.2.1)

so we find
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Girue® =T¢) true@ / [K(2) (1- Tel,rue®) 1- (10.2.2)
Thus, by using the robust estimator to estimate the closed-loop transfer function, which we know
is stable by our choice of compensator, we can learn about the possibly unstable true plant via Eqn.

(10.2.2). However, to learn anything, the additive error bound on Tcl,u.uc(ej(’)T) must be small

enough so that the denominator of Eqn. (10.2.2) cannot be zero. In this indirect way, we can still
use the robust estimator to identify an unstable plant.

10.2.4 Treatment of Slowly Time-varying Plants

The results of this thesis were derived assuming that the plant was linear and time-invariant,
that is, we assumed that the plant parameters were constant. In practice, a plant may have slowly
time-varying parameters. Indeed, parameter drift is one reason for using adaptive control. To
apply the results of this thesis to slowly time-varying plants, several changes must be made. We
sketch some possible approaches to this time-varying problem.

The part of the robust estimator that is most directly affected by this slowly time-varying
problem is the updating of the cumulative frequency-domain bounding function. In Section 5.3,
we set the cumulative frequency-domain bounding function to the smallest value of the
frequency-domain bounding function that was observed since time zero. Thus, the cumulative
bounding function could have values, at certain frequencies, that were found from data of the
distant past. A question for future researches would be how to use knowledge of the maximum
rate of change of the plant parameters to discount the past values of the frequency-domain bounding
function. One could add an additional error term that increases as a frequency-domain bounding
function (for a given time) becomes more and more outdated.

10.3 Some Parting Thoughts on Adaptive Control

In this brief final section of the thesis, we discuss and speculate on the usefulness of the
thesis results as they relate to the robust adaptive control problem. As has been emphasized, the
thesis research was begun with the mandate to develop some sort of guarantees at the identification
stage of a robust adaptive controller, so that we could guarantee stability of the closed-loop system
in the presence of unmodeled dynamics and an unmeasurable disturbance. This guarantee of robust
stability comes at a great price. The robust estimator requires considerable design time and
extensive off-line and on-line calculations. In order to provide some idea of how much work is
required in the robust estimator design process, we will discuss the major design steps. We will
only consider the design of a robust estimator that uses the frequency-domain parameter estimator.
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The first major step in the application of the robust estimator results is the specification of the
assumptions of Section 3.6. Recall that these assumptions include the specification of a nominal
model structure along with a bounded parameter space. In addition, several bounding functions,
some in the frequency-domain and some in the time-domain, are required. Given this information,
the designer must choose the sampling period, the DFT length, the memory length M, a weighting
function for the frequency-domain parameter estimator, and an appropriate target closed-loop
bandwidth. Figure 5.4, which is included at the end of Chapter 5, provides a summary of the parts
of the robust estimator (using the frequency-domain parameter estimator). Most of the calculations
are done on-line. Key off-line calculations are: 1) the analytical computation of the remainder term
of Eqn. (5.2.5), and 2) the computation of the supremums of two transfer function magnitudes, at

each frequency, as 6 and 8, vary over the parameter space © {see |Hgy,! in Eqn. (5.6.14) and

IHg,;3! in Eqn. (5.7.18)}. With all this off-line work done, one can implement the complete robust

estimator, which again is summarized in Figure 5.4. As was discussed in Section 6.7, the robust
estimator requires extensive on-line computations that are dominated by the computation of the
frequency-domain bounding function of Eqn. (5.2.4). In the author's opinion, it is the extensive
on-line calculations that are the biggest deterrent to using the robust estimator. The design
procedure and the robust estimator algorithm itself are complex; however, this is unavoidable
considering the type of guarantees that are provided. We are asking our adaptive control algorithm
to be robust to the effects of unmodeled dynamics and an unmeasurable disturbance, so we expect a
more complex algorithm than the standard "ideal case” model reference adaptive controllers.

In summary, it is the author's opinion that the prohibitively large computational requirements
of the robust estimator make it an unattractive option for adaptive control in the short term.
However, as the computational capabilities of computers increase, the robust estimator will become
increasingly appealing. Thus, the author believes that in the long run we may find that the
extensive computations of the robust estimator are a necessity if we want to obtain a truly robust
adaptive control system.
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Appendix A: Treatment of Infinite Summations

In this appendix, we consider computational methods for evaluating infinite summations.
These summations arise from the frequency-domain folding that occurs when the continuous-time
unmodeled dynamics are translated to discrete-time. First, we present a method for finding a
closed-form expression for an infinite summation, using a result from complex analysis. This
complex analysis approach can only be applied in some cases. So, to handle the cases that can't be
treated using this approach, we will then show how to bound the infinite summation by integrating
a function that bounds the summation terms.

Computing an Closed-form Expression Using Complex Analysi

From Theorem 4.1 of Astrom and Wittenmark [31] we know that if FC(s) is a
continuous-time transfer function and F(z) is the correponding pulse transfer function, then

FeloTy= 1 3 F(jo +jrog). (A.1)
T r=-

Further, if we choose

FS(s)=1/s? (A2)
then, from Appendix B of Franklin and Powell [30], we find that

F(z)=Tz/(z-1)2 (A3)
From Eqgns. (A.1-3) we find that '

TelOT /(cos(@D) -1 +jsin@T))2 =1 X - 1/(w+1ag)> (A4)

T r=-co \

Taking the magnitude of both sides of this equation and using the fact that

| cos(@T) - 1 +j sin(@T) 2 = cos(wT)? - 2 cos(wT) + 1 + sin(wT)?2

2(1-cos(w))

= 4 sin(0T/2)2 (A.5)
yields

T/(4sin@T/22) = 1 2, 1/(@+10)>. (A.6)
T r=-00

After some manipulation we find that
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2 /sin(ro/0g)? = X 1/((0/ag)+r)?, (A7)
r=-00

or letting p = @ /

n2/sin(np) = X 1/(p+r)2 (A.8)

Ir=-o00

We can differentiate Eqn. (A.8) to arrive at expressions for infinite summations of higher-order
reciprocal powers. Under certain requirements, which are satisfied by the functions in Eqn. (A.8),
we can differentiate both sides of Eqn. (A.8) yielding

Beos(np)/sin(np) = 2, 1/(p+r)3. (A9)
Ir=-co
Further, differentiating both sides of Eqn. (A.9) we find that
@ (1+2cos(mp)2)/(3sin(np)?) = 2, 1/(p+r1)t (A.10)
r=-c0

This process can be continued for higher-order reciprocal powers.
A final detail that must be addrcssed, is the behavior of Eqns. (A.8-10) as p—0. Since, for

example, the summation in Eqn. (A.8) will have a term 1/p2 that Approaches infinity as p—0, we
must consider instead the summation

[72/sin(np)2]-[1/p21= X 1/(p+1)2 (A.11)

I=-co

r#0

Taking the limit as p—0 on both sides of Eqn. (A.11) yields after some manipulation

Y 1/r2=n2/3. (A.12)
I=-00

=0
Using a similar process for Eqn. (A.10) yields
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> 1/r4=n%/45. (A.13)

r=-c0

20

In Eqn. (A.9), the terms for negative r cancel the terms for positive r so that we find

2 1/r3=0. (A.14)
T=-00

r#0

In conclusion, we see that for even reciprocal powers we can use equations like (A.8) and (A.10)
to achieve magnitude bounding in our frequency-folding equations but for odd reciprocal powers
we need another approach. This is because in Eqn. (A.9) the terms are negative for negative r.

Integral Bounding Approach

We will now show how an infinite summation can be bounded by integrating a function that
bounds the terms of the infinite summation. This method can be used to treat the cases of odd
reciprocal powers. The author first saw this method in [37]. Assuming thatn > 1 is a real number
and N > 2 is an integer, it can be shown that

2 1/t% < J(1/x)dx = 1/[(n-1)(N-1)01]. (A.15)
r=N N-1 )
Now, consider the infinite summation
) N-1 00
Do 1/lp+rM = 2 1/ip+rP+ X [1/1p+r® + 1/1r-pl]. (A.16)
T=-c0 r=-(N-1) =N
If0<p<1,then
2 1/lp+ril g X 1/ (A.17)
=N =N
and
D 1/lr-pl < X 1/(r-1)N (A.18)

=N r=N
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From Eqns. (A.15-18) we conclude that if 0 < p < 1,n> 1 and N > 3, then

- N-1
D 1/lp+rl g X 1/ip+rm
f=-o0 r=-(N-1)

+[1/(n-1)1[1/(N-1)™1 4 1/(N-2)1, (A.19)

The first term on the right-hand side of the above equation must still be computed numerically.
However, the contribution of the infinite summation term on the right-hand side of Eqn. (A.16) is
bounded by the easily computable term in Eqn. (A.19) and can now be used to handle the
summations with odd reciprocal powers.
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Appendix B: Impulse Response Bounding Integrals

In this appendix, we derive results for bounding a discrete-time impulse response given a
bounding function on the continuous-time impulse response. From Franklin and Powell [30,p.62]
we find that, if the zero-order hold equivalence is used, then the discrete-time impulse response

Ztrueln] is related to the continuous-time impulse response g0 (t) as follows.

nT

gruelnl = | grue® dt, Vn. (B.1)
(n-1)T

We assume that g, .(t) satisfies the magnitude bound of the form of assumption AC1.6 of Chapter
3,

c
Igere(® < % b; t0) e(3iY), fort>0, (B.2)
i=1
where r; is a positive integer, and b; > 0, a; > 0 (i.e. poles in the open left-half plane), and r; are

known fori=1,.., IOC. Then, we find that

nT
lgruenll € | lggye®!dt (B.3)
- (@DT :
Ip° nT
< i by J D elan), fornx1. (B.4)
i=1  (-DT

We now consider several cases of Eqn. (B.4).

Case 1. (r = 0, single-pole case)

nT
b [ e®dr=(bm)(1-e2T)edTOD), forn>1. (B-5)
(-DT -
From formula 521. of [38] we know that,
T
[feat gr=_ea > P/ ((r-p)taPtl). (B.6)
p=0

This formula can be used to evaluate Eqn. (B.4) for more complex cases than r=0. We have
computed a few cases as follows. ,
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Case 2. (r = 1, double-pole case)

nT
b | te@ di=(b/a) {[(1/a)(1-e3T)-T]+[nT(1-e3T)]}eaTOD), forn>1.
n-1T (B.7)

Case 3. (r =2, triple-pole case)

nT
b | 2edi=(b/a){ [T2-2T/a+ /a2 (1 -e2T)]
n-DT
+n QT [-T+1/a) 1-e3D)1+n212 (1 -e2T) jeaT@-1), forn>1. (B.8)

We note that in all of the above cases, gtrue[n]=0' for n <0 since Ztrue(t) is causal and there is no

feedthrough term in Eqn. (B.2). The above results could also have been derived by finding the
inverse z-transform of the zero-order hold equivalent of the bounding function in Eqn. (B.2).
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Appendix C: Summation Equations

In this appendix, we summarize several useful results concerning the evaluation of infinite
and finite series of the geometric type. We will consider several specific cases and then describe
the method for the general case. Under the conditions stated, it can easily be seen that all of the
following series are convergent via the ratio test. See Rudin [39].

Case 1. We define

I
S, =2 xi, (C.1)
i=r0

where r, and r, are positive integers, r, <ry, and Ix < 1 if r;—ee. We find that

r r+1
S;x= 2 i+l = 12 =8, -x0+xT1+l, | (C2)
i=r0 j=r0+1
So, .
Sy =(xTo-xf1+1)/(1-x). (C3)

Special Case 1a. If r;—eo, then
S;=xf0/(1-x). - (C4

Special Case 1b, If 1y=0, and r; <o, then

S;=1/(1-x). (C.5)
Case 2.
r
i=T, -
We find that
T
ds, = 2 ixi-1, (C.)

dx i=r0
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So,
S;=xd§;,
_ dx

and it can be shown that

Sz=[xr0(r0-r0x+x)+xr1+1(-r1+r1x-1)]/(1-x)2.

Special Case 2a. If r;—eo, then
Sy=xT0(ry-rgx+x)/(1 -x)2.

Special Case 2b. Ifr0=0, and ry—eo, then

Sy=x/(1-x)2

Case 3.
r
S3= i i2xl,
i=r

As in Case 2, we find that
S3=xdS, .
dx

and it can be shown that
Sy =012 X0 + (2152 + 215+ 1) xT0*1 + (1, - 1)2 xT0+2

S(ry+ 121+ 4 (212 # 21 - 1) K121 2xT143 ] /(1 - x )3,

Special Case 3a. If r;—eo, then

Sy=[12xT0+(-2152 + 215+ 1) xFo+] + (15- 1 )2 xF0+21/(1-x)3,

Special Case 3b. If rg=0, and ry—eo, then
Sy=x(1+x)/(1-x)3.

General Case, For some integer n > 1, the sum
3
5,23 @D
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(C.8)

(C9

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)
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can be found by induction, since
S,=x( dS(p.1)/dx),

and S, is given by Eqn. (C.3).

Page 316

(C.18)
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Appendix D: Discrete-time Impulse Response Bounding

In this appendix, we show how to find a bounding function on the impulse response of a
system that is composed of two systems. We assume knowledge of a magnitude bounding
function on each of the impulse responses. We define

n n
haln] = hy[n]*hyfn] = 2 hy[m] hyln-m] = 2. hylp] hy[n-pl. (D.1)
m=0 p=0

where we assume that h;[n] and h,[n] are causal transfer functions. Further, we assume that the

following magnitude bounding functions are known for h,[n] and h,[n],
Ihy[n]l < hy[n], Vn (D.2)
Ihy[n]! < h,[n], Vn (D.3)
where both B_l[n] and Fz[n] are of the form,

I
i g Ls)) i (D.4)
i=1

where r; is a positive integer, g; > 0, and 0 < p; < 1. In this appendix, we consider several
different cases of Eqn. (D.4) for h;[n] and hy[n]. Ineach case, we seek a magnitude bounding
function on hs{n]. From Eqns. (D.1-3) we find, .

Ihs[n]l < hyln], Vn (D.5)
where,
n
hyln]= X Ty[m] hyln-m). (D.6)
. m=0

Now, we consider some specific cases.

Case 1. (both first-order)
Kl[n] =g; py™ forn>0 (D.7)

Fz[n] = g, p,, forn > 0. . (D.3)
From Eqn. (D.6) we find,
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n
hy[n] = ) g1 P g p ™ (D.9)
m=0
So,
n
halnl = { g g, 2 (Py/p)™ ) P2 (D.10)
m=0

We consider two possibilities in Eqn. (D.10):

Case 1a. (p;#py) In this case, using Eqn. (C.3) from Appendix C we find that

halnl = { gy g, [ (1- (/D)™ 1)/ (1-Py/py)) 1) poh, (D.11)

or

hylnl ={ g, 8,/(Py-py) } (p0+l - p,ntl), (D.12)

We note that a more conservative, but simpler bounding function can be found, as follows,

hyln] < (g; 8,/ 1py - Pyl) (max(py, pp ) )WL (D.13)

Case 1b. (p; =p, ) In this case, from Eqn. (D.10),

hyln] = { g, g (n+1) } ™. (D.14)

Case 2. (one second-order. one first-order)

hy[n] =g; np,8, forn>0 (D.15)

hyln] = g, p,M, forn > 0. (D.16)
From Eqn. (D.6) we find,

n
hln] = X gy mp,™ g, p, ™ (D.17)
m=0
So,
n
hylnl = ( 818, 2 m (py/py)™ ) ot (D.18)
m=0

We consider two possibilities in Eqn. (D.18):
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Case 2a. (p; #p, ) In this case, using Eqn. (C.9) from Appendix C we find that

bylnl = { g1 8, [ (P1/py) + P1/p)™ (-n+n /Dy - 1) 1/(1- (py/py) Y1 } PR, (D.19)
or

E[n] ={g18/(py-p; )2) [p; P, +(np -+ 1) py) pnH1 1. (D.20)

We note that a more conservative, but simpler bounding function can be found, as follows,

hyln] < { g; 8, (+1) / (py - py 2} (max(py, p,) )02, (D.21)

Case 2b, (p; =p, ) In this case, we use L'Hospital's rule twice to find from Eqn. (D.20),

hylnl={g, g/2) n@+)p™, (D.22)

or

hylnl={ g, g/2) (n?+n)pDn. (D.23)

Case 3. (both second-order)

hym]=g;np," forn>0 (D.24)

E,_[n] = g, n p,1, forn > 0. (D.25)
From Eqn. (D.6) we find,

n .
hylnl = 2, g, mp,™ g, (n-m) p,0- M, (D.26)
m=0
So,
n n
hyln] =g, g, ([ 2 m(y/p)™ Inp-[ 2 m2(py/p)™ 1p,° ). (D.27)
m=0 m=0

We consider two possibilities in Eqn. (D.27):

Case 3a. (p; #p, ) In this case, using Eqns. (C.9) and (C.15) from Appendix C we find after
much algebra that
H:,,[n] ={g,8/(py-n $}[(n-1) (p1P2n+2-P1n+2p2)
+(n+1) (p1n+1 p22- p12p2n+1 )1 (D.28)

We note that a more conservative but simpler bounding function can be found, as follows,
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hyln] < { g, 8,(2n)/Ip, - p,13 } (max(p;, py ) )3, (D.29)

Case 3b. (p; =p, ) In this case, we use L'Hospital's rule three times to find from Eqn. (D.27),

hyfn] = { g, 8,/6 ) (-1)n (a+1) p;", (D.30)
or

hyln]={ g, 8,/6) (n3-n)p;. (D31)
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Appendix E: Proof of Theorems 4.1 and 4.2

In this appendix, we present a complete proof of Theorem 4.1. An outline of this proof has
appeared in the literature in parts, see [17] and [18]. In the following proof of property 1 the

parameter '€, which appears in the algorithm and proof in [17,18], does not appear. This parameter
is unnecessary and can be eliminated as we have done in our statement of the algorithm and the

proof. In Eqn. (E.23) we arrive at an expression that depends only on the parameter o whereas the

proof of [17,18] arrives at an expression that also includes ‘e. As anote for the reader we observe
that, since the matrix P is symmetric and positive definite, the maximum and minimum singular
values of P are equal to the maximum and minimum eigenvalues of P, respectively. Thus, the
condition number of P is equivalently defined as the ratio of either the singular values or the
eigenvalues.

We conclude the appendix with a proof of Theorem 4.2. This proof is largely the same as
the proof of Theorem 4.1 so only the modifications are mentioned. Goodwin et al. {1] have
previonsly nraven most of the properties of Theorem 4.2.

Proof of Theorem 4.1:

Proof of Property 1: From Eqn. (4.5.5) we recall that
e[n] =- ¢f[n-1]T 8[n-1] +¢,[n] = -B[n-1]T ¢f[n;1] + ¢[n], where (E.1)
6ln] = 6[n] - 8, (E.2)
Subtracting 90 from each side of Eqn. (4.5.7) and using Eqn. (E.1) we find that

0ln] = 8[n-11+ __ Nl PIn-21 dfn-11 (- ogin-17T 8[n-1] + ¢;[n]).
1+ ¢gn-1]T P[n-2] ¢¢n-1] (E.3)

Using the matrix inversion lemma,
(A+BCYl=Al.AlB(1+calBylcal, (E.4)
and Eqn. (4.5.8) which we repeat here for convenience,

P[n-1] = P[n-2] - -u[n] P[n-2] ¢¢[n-11 ¢n-11T PIn-2] ,
' 1+ odn-11T P[n-2] 6¢n-1] (E.5)
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we find that

Pln-1]"1 =P[m-211 + o] dfln-11 ofn-1] :
1+ (1-v[n]) ¢¢ln-1]T P[n-2] ¢¢ln-1] (E.6)

Using Eqns. (E.3) and (E.5) it can be shown that

8{n] = P[n-1] P[n-2]"! B[n-1] + _w[nl P[n-2] ¢efn-11e,[n] .
1+ ¢¢n-1]T P[n-2] ¢¢ln-1] (E.7)

We now define the candidate Lyapunov function,

Vin] = 8[n] T P[n-17"1 8[n], (E.8)
which is non-negative since P is symmetric and positive definite. Using Eqns. (E.7-8) we
compute,

V[n] - V[n-1] = (8[n] - 8[n-1])T P[n-2]"1 8[n-1]

+ [n] 8n1T PIn-11"1 P[n-2] ¢dn-11e,[n] .
1+ ¢dn-11T P[n-2] ogln-1] (E.9)

Using Eqns. (4.5.7) and (E.7) in (E.9) yields
VIn] - V[n-1] = { v[n] / ( 1 + ¢¢ln-1]T P[n-2] ¢¢n-11) } { d¢ln-11T &[n-1] e[n]

+ 8(n-11T ¢gin-1] e[n] + vIn] o¢dn-11T P[n-21 Pn-11"" PIn-21 ¢¢ln-11ey[ml? 4.
1+ ¢¢n-11T P[n-2] ¢¢ln-1]

_ (E.10)
Eqns. (E.1) and (E.6) are then used to find

VIn] - V[n-1] = { v[n] / (1 + ¢¢ln-1]T P[n-2] on-11) } { (e;[n] - e[n] ) (e;[n] + e[n] )

+ [n] ¢¢n-1 IT P[n-2] ¢¢n-1] Ql[glz
1+ ¢¢[n-1]T P[n-2] ¢¢[n-1]
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+ vinl? ( ¢dn-11T Pn-2] odn-11)2 ¢, [n]? |
{ 1+ 0gdn-11T P[n-2] ¢gdn-11 } ( 1 + (1-v[n]) ¢gn-11T P[n-2] 6n-1] }

(E.11)
This reduces to .

Vin] - V[n-1] = { v[n] / ( 1 + ¢¢ln-1]T P[n-2] ¢¢n-11) } { e,[n]? - e[n]?

+ v[n] Qf]n—llTPln-2| ¢¢[n-1] glmz }.
1+ (1-v[n]) ¢f[n-1]T P[n-2] ¢¢[n-1] (E.12)

We reduce Eqn. (E.12) further to find
Vin] - V[n-11 = { v[n] / ( 1 + ¢¢n-1]T P[n-2] ogn-1]) }

(—1+0dn-11TPI-2 odn-11  eylm? - efn]? .
1+ (1-0[n]) ¢gln-11* P[n-2] ¢gn-1} (E.13)

We will show that the right-hand side of Eqn. (E.13) is non-positive. However, we must
first make some observations. We observe from the properties of the deadzone function 'f' of Eqn.
(4.5.6), the definition of v[n] and Eqns. (4.5.10-11) that

1 g —Leodn-lTPn2odn-11 1 _ g2
1+ (1-v[n]) 0¢1[n-1] P[n-2] ¢dn-1] 1~ (E.14)

Since E—l[n] is a bound on le,[n]l, we use Eqns. (E.13-14) to find
VIn] - Vn-1] < {o[n]/(1+¢gn-1T P[n-2] ¢gin-11) } { B2 ey[nI2-e[n]?}.  (E.15)
We observe that if le[n]l > B E—l[n], then

|£{ B e;[n), e[n] } | = | le[n]! - B e m] | (E.16)
= |f{ B e (n], eln] } I le[n]l = | B e,[n]le[n]l - e[n]? | (E.17)
= -f{ B e,[n], e[n] } e[n] = B e,[n] le[n]l - e[n]?, (E.18)

where we have used the properties of the deadzone to determine the signs in Eqn. (E.18). Further,

ifle[n]l > B e,[n], then
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B e,[n] le[n]l - e[n]? > B2 ¢;[n]? - e[n]2. (E.19)
Thus, if le[n]l > B -é—l[n], then

-£{ B ey[n], e[n] } efn] > B2 ¢;[n]? - e[n]?. (E20)
Multiplying both sides of Eqn. (E.20) by the non-negative number f{ B E—l[n], e[n] }/e[n] we find
that

-£{ Bey[nl, efn] )2 > (£( B eyln, e[n] } /eln]) (B2 e;[n]? - e[n]?) (E21)
for all e[n]. If le[n]l <P E-l[n] then both sides of the above inequality are zero. From Eqns.
(4.5.9-10) we find that '

v[n] = f( B ¢,[n], e[n] } / efnl. (E.22)
Combining Eqns. (E.15) and (E.22) and then using Eqn. (E.21) we find that
Vin] - Vin-1] < - o f{ B e;[n], eln] }2/ (1 + ¢¢dn-11T Pn-2] ¢ln-1). (E.23)

From Eqn. (E.23) we conclude that the non-negative function V[n] is non-increasing and hence
6n]T P(n-17"! 8[n] < 8[n-11T P[n-23"1 B[n-11. (E.24)
From Eqn. (E.6) we find

P}l =P[n-171 + vin+11 o¢fnl ¢¢fal ,
1+ (1-0[n+11) 0gn] T P[n-1] ¢¢ln] (E.25)

where we note that v[n+1] is non-negative and always less than unity so the second term on the

right-hand side is positive semi-definite. From (E.25) and the fact that P is symmetric and positive
definite, we find that

Opin (P} 2 0,5 (PIn-1171) > o (PL-1TY), (E.26)

where omin{ *} denotes the minimum singular value of a matrix and later we will use cmax{-} to

denote the maximum singular value of a matrix. Using Eqn. (E.26) and then (E.24) we find

6,in (P11 1118[0)012 < o, (Pn-17"1) 11 B[n] 112 (E.27)
< 81T P[n-11-1 &n] (E.28)

61017 pr-17-1 870 (E.29)

IA
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< O (P13 1B[0] 02, (E.30)
Therefore,
18[n] 12 < x{P[-1]} 1 6[01112, (E31)
and hence
18[m] < Vx{P[-11} 18[0]1, (E.32)
where
K{P[-11} = 0, (PI-11} / 050 (P11} = 0, APE-1171) / 05 (PL-1T71). (E33)

This establishes property 1 of Theorem 4.1. The result stated in Remark 2 of Chapter 4 follows
directly using the initial time of n-2 instead of 0 in Eqns. (E.27-32).

Proof of Property 2: Using Eqn. (E.23) and summing from 1 to N yields

N
VIN- VI0] < - X of{ B e;[n], e[n] }2/( 1+ ¢gin-11T Pn-2] ¢¢n-11). (E.34)
n=1
Since we know that
-(VIN]-V[0]) <o, VN ' (E.35)

we conclude that the summation of positive terms in Eqn. (E.34) is finite for all N. This implies

that

lim f{ B e;nleMm}2 =0,
B 1+ ¢gn-11T P[n-2] ¢¢n-1] (E.36)

which establishes property 2.

Proof of Property 3: For this part of the proof we must first develop some preliminary results.
Since

_f_{__ﬁ_g-llnl,elnl 12 = (__lﬂfjn-llT P[n-2] ¢¢n-1]) f{ B_gl [n]. e[n] }2,
1+ ogln-11T P[n-2] ¢¢ln-1] (1+0gn-1]T P[n-2] ¢gln-1] ) (E.37)

we find from Eqn. (E.34-5) that for all N,
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N
2 (1+6gn-11T PIn-2 on-11) £{ B e [l eln] }? -
n=1 (1+¢gin-11T P[n-2] ¢¢fn-1] 2

N

N
2 __ f{Benlelnl}? + 2 odn-11T PIn-2 o¢fn-11f{ B fnl elnl}? « o
n=1 (1 +¢dn-11T P[n-2] ¢n-17)2  P=1 ( 1+ ¢gdn-1]T P[n-2] odn-1] )2

(E.38)
Further, from Eqn. (E.34) we find
N N .
z _L&Q f —1[_].._QL]._}.H n] }2 < 2 __fLB_Ql[_L_QL]_}.n n 2__<oo,
1=l (1 +¢dn-11T P[n-21 0n-11)2 =1 1+ ¢dn-1]T P[n-2] ¢¢n-1] (E.39)
We conclude from Eqns. (E.38-9) that for all N,
N
> ¢fn-11T PIn-2 ofn-11f( 8 &) [nl efnl }? ¢ o,
n=1 (1+ ¢dn-11T P[n-2] ¢n-1] )2 (E.40)

This implies that

lim gzdn-llTPlg-Zle]n-llf] [}—gl [nl.efn] }? _ 0.
o ( 1+ ¢gn-11T P[n-2] ¢¢n-1] )2 | (E.41)

Now, from Eqn. (4.5.7),

18[n] - 8[n-1112 = N2 odn-11T PIn-212 oefn-11 em]>.
(1+ ¢dn-11T P[n-2] ¢¢n-1] )2 (E.42)

Using the fact that -

v[n]? efn]? = a2 f{ B e,[n], e[n] }2 ' (E.43)
and, from Eqn. (E.26), the fact that

Omax (P[]} £ Omax (Pl-11}, (E.44)

we can show that
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118[n] - 8[n-1112 < _¢¢In-11T PIn-21 ¢dn-11£{ B ¢, [nl. eln] 12 ( 02 O (PL-11} )-
( 1+ ¢dn-11T P[n-2] ¢¢ln-1] )2 (E.45)

Eqgns. (E.41) and (E.45) allow us to conclude that

lim | 6[n]- 6[n-1]|2=0, (E.46)
n—oo

and hence
lim | 6[n] - 6[n-1]|| =0, (E.47)
n—oo

which establishes property 3.

Preparation for the Proof of Theorem 4.2:

Before proceeding with the basic proof, we will first present two lemmas that will be used in
the proof of Theorem 4.2. Both of the following lemmas have been stated by Goodwin et al. See

[17] and [18] for the statements of Lemmas 1 and 2, respectively.

Lemma 1: The convergence results of properties 2 and 3 of Theorem 4.1 (or 4.2) hold for
algorithms that modify the P matrix if the modification algorithm satisfies the following properties:
1) P is increased at modification, that is, P[n-1] > _P_[n-l], where f’—[n-l] is the least-squares
projection matrix.

2) P has an upper bound, that is, 65, {P[n-1]} is bounded.

Proof: Substituting P[n-1] for P[n-1] up until Eqn. (E.24) in the proof of property 1 of Theorem
4.1, we see that
8[n]T Pln-111 8[n] < 8n-11T P[n-21"! B[n-1] .
- o f{ Beglnd, e[n] )2/ (1 +¢gln-1]T P[n-2] oln-11).  (E.48)
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From 1) above we know that

P[n-11-! < Pn-17-1 (E.49)
so that

8n]T Pn-11"1 8[n] < 6[n]T P[n-11-1 8[n]]. (E-50)
Combining Eqns. (E.48) and (E.S0) yields

61T P[n-17! 8[n] < B[n-1]T P[n-211 B[n-1]

-af{ B enl, e[n] }2/(1+¢dn-11T P[n-2] ¢gln-11).  (E.51)

Using Eqn. (E.51) the proofs of properties 2 and 3 follow exactly the same as in Theorem 4.1 with
the exception of Eqns. (E.44-45). Since Eqn. (E.44) is not necessarily true for the modified

algorithm, we instead write i

18(n] - Bn-1112 < _ogfn-11T PIn-21 o¢fn-11 £{ B &;(nl, eln] }2 ( o2 Gppay (PIn-11} ), |
(1+ ¢¢n-1]T P[n-2] ¢¢ln-1] )2 E5) |

where we know that 6, {P[n-1]} is bounded from 2) above. The proof of property 3 can then l
be completed.

Lemma 2: The modified algorithm defined by the use of Eqns. (4.5.17-19) has the following

properties:
1) Oyax (Pln-1]} < trace{P[n-1]} = cp,n2>1 (E.53)
2)P[n-1] > P[n-1], n> 1. (E.54)

Proof: From Eqns. (4.5.17) and (4.5.20) we find that if T > Cq» then
trace{P[n-1]} = trace{P[n-1]} + ¢;-T = T+¢;-T = ¢, (E.55)
andif T< Cp» then

trace(P[n-1]} = (¢y/ ) trace(P[n-11} + (¢, - c5) = ¢+ - = C;. (E.56)

Further, we know that
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m . m
2., 6,{P[n-1]} = X, A{P[n-1]} = trace{P[n-1]}, (E.57)
i=1 i=1

where o; and A; denote the singular values and eigenvalues, respectively. We find that
Omax{P[n-1]1} < trace(P[n-1]}. (E.58)
This concludes the proof of property 1 of Lemma 2.

As was shown in the proof of property 1 of Theorem 4.1, Eqn. (4.5.19) has the property that

P[n-1] < P[n-1] (E.59)

= trace{P[n-1]} < trace{P[n-1]}. (E.60)
Now, from Eqn. (4.5.18) we know that

trace{P[-1]} =c;. (E.61)
_Thus, from Eqns. (4.5.17) and (E.60-1) and property 1, we find that

T < 6. | (E.62)
Using Eqns. (E.62) and (4.5.20) and the fact that Cq > C(, We see that

Pln-1] = ko Pn-11 +k; I, (E.63)
where

kg=1landk;=((c;-1t)/m)20, if t1>cyand (E.64)

kg=(cy/t)=21andk; =((c;-¢5)/m)>0, if t<cy (E.65)

This establishes property 2 of Lemma 2.

Proof of Theorem 4.2: We will not prove the properties of this theorem in order. First, since
Lemma 2 shows that the modified algorithm satisfies the requirements of Lemma 1, we conclude
that properties 2 and 3 of Theorem 4.2 are true. Now, we proceed with the proof of property 1.
Using the results of Lemmas 1 and 2, we find from Eqn. (E.51) that

8n]T P[n-11"1 8[n] < 8[n-11T P[n-27-1 B[n-11. (E.66)

This equation is then used to find
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Oppin (PIn-11" 131800112 < 8[n]T Pln-1171 8[n]
< 8[01T p(-1171 810]

O ax (PL-11 111870112,

IA

Therefore,

18{n]1? < (0,0, (PIn-11/ 0 {P[-11}) 180112,
and hence

18]I < VO pax (PIn-117 Gpin {P-11} 118[0]1.

From Eqn. (4.5.18),

Opin(Pl-11} = ¢;/m.
Thus, using property 1 of Lemma 1 we find that
18n]ll < Vm 18[0].
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(E.67)

(E.68)

(E.69)

(E.70)

(E.71)

(E.72)

(E.73)

This completes the proof of Theorem 4.2. The result stated in Remark 4 of Chapter 4 follows

directly using the initial time of n-2 instead of 0 in Eqns. (E.67-71).




Appendix F Page 331

Appendix F: Discrete-time Stability-Robustness Tests

In this appendix, we will develop tests that can be used to guarantee the stability robustness
of a discrete-time closed-loop system. We will state SISO discrete-time versions of the
continuous-time stability-robustness tests developed by Lehtomaki et al. [40]. The following
development parallels that of reference [40].

Consider the system of Figure F.1. We assume that both the SISO loop transfer function

T(z) and the perturbed loop transfer function T(z) have state space representations (A, b, cT) and

(X, B, ?:'T), respectively, so that

T@) =cT(2A-A)1b (F.1)
and the perturbed transfer function

T(z)="cT(zI- A)!b. (F.2)
Further, we define the open and closed-loop polynomials,

dop (@) =det(zl- A), (F.3)

0y (2) =det(zI- A +bcT). (F.4)

The polynomials $OL(z) and $CL(z) are defined analogously for the perturbed transfer function.

The appropriate Nyquist contour Dy, in the z-plane is shown in Figure F.2 where Dy avoids zeros

of q)OL(z) on the unit circle by 1/R radius indentions. Lastly, we define T(z,€) as a rational transfer

function that is continuous in z and € for £ in [0,1] and for all z in Dg. T(z.€) also satisfies the

following conditions:

T(z,0) = T(z) (F.5)
and

T(z,1) = T(2). (F.6)

Theorem F.1: The polynomial $CL(Z) has no zeros outside the open unit disk if the following

conditions hold:

1) a) doL(@ and $OL(z) have the same number of zeros outside the open unit disk.

b) if G (€0aT) = 0, then ¢, (€PaT) = 0.
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C) ¢y (2) has no zeros outside the open unit disk (i.e. nominal stability).
2) 1+T(zg) #0, forall ein [0,1] and for all z € Dy with R sufficiently large.

Proof: The proof of Theorem F.1 is analogous to the proof of the similar continuous-time result.
The discrete-time version of the Nyquist criterion, see Ackermann [32], is used in the proof.

QED.
Now, let
T(z) = T@) [1 + 8(z)] . (F.7)
so,
2) = [T - T@)] / T(). (F.8)

We define a magnitude bounding function on 8(z) on the unit circle. That is,

15e9T) < AEi®T), vo. (F.9)

Theorem F.1 can be used to prove the following theorems.

Theorem F.2: The polynomial $CL(z) has no zeros outside the open unit disk if the following

conditions hold:
1) condition 1) of Theorem F.1 holds.

2) 1+T@) > 18(z)l, Vz e Dy.

Theorem F.3: The closed-loop system T(z) /(1+ f(z)) has all its poles in the open unit disk if:

1) a) <|>0L(z) and $OL(Z) have the same number of zeros outside the open unit_disk.
b) <|>CL(z) has no zeros outside the open unit disk (i.e. nominal stability).

2) 0o @220, Voo.

3) a) 11+ T 19Ty > A@I®T), o, or equivalently,

b) Ty /1 + TED) < 1746E9T), v
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+
\® > T(2) >
Figure F.1: Closed-loop System.
N\
Z-plane
DR
radius=1/R
radius=1/R
N
7

Figure F.2: Discrete-time Nyquist Contour.
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